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A B S T R A C T   

Hard-magnetic soft (HMS) materials are soft active materials prepared by embedding the hard-magnetic particles 
(e.g. NdFeB) into soft elastomer, which can be actuated by applied magnetic fields. With the ability to retain 
remnant magnetism, HMS materials have many applications in soft robotics, haptic sensors and other fields. For 
HMS structures used in soft robotics, mechanics models have been developed for better exploiting the potential of 
the HMS materials. However, for rod-like structures made of soft materials, the nonlinear stress–strain relation 
and the areal change of the cross-section have not been considered in previous modeling work. In the present 
three-dimensional HMS rod model, started with the geometrically exact beam theory, the rigid cross-section 
assumption is replaced with a planar areal change assumption for soft rods, incompressible neo-Hookean ma-
terial model is used to model the hyperelastic behavior of elastomers, which will be more accurate than linear 
relation under large deformation. Consistent with the deformable cross-section assumption, the magneto-elastic 
energy distribution is formulated and reduced to the line of centroid of the soft rod. To verify the accuracy and 
efficiency of the model, some simulation examples and experiments are performed. The error between the 
experimental results and the simulation results calculated by using 5 elements is within 10%. Our model can 
accurately and efficiently predict the 3D large deformation of the HMS rod, which can reduce the design and 
optimization cost and shorten the design cycle of HMS structure.   

1. Introduction 

Due to their low elastic modulus, soft active materials usually possess 
the ability to achieve rapid and large deformation through various 
external stimuli such as variable length tendons (Yu et al., 2022), 
pressure differential (Ma and Zhou, 2023), temperature (Kang et al., 
2019), light (Chen et al., 2021), electric (Cao et al., 2019) and magnetic 
fields (Kim et al., 2018; Du et al., 2020), making them exhibit great 
potential in the fields of biomedical engineering (Joo et al., 2021), soft 
robotics (Ye et al., 2022) and mechanical sensors (Yu et al., 2022), etc. 
Compared to other stimuli mechanisms, magnetic fields have unique 
merits: (1) magnetic actuation performs well in the enclosed space, due 
to the high penetration ability of magnetic fields into a wide range of 
materials (Hines et al., 2017; Sitti and Wiersma, 2020; Chung et al., 
2021); (2) the response time of magnetic actuation is relatively short 
(Chung et al., 2021). Therefore, magnetoactive soft materials have been 

extensively studied over the last few decades. 
In recent years, a new class of magnetoactive soft materials has 

attracted the interest from researchers, viz, hard-magnetic soft (HMS) 
materials. HMS materials are fabricated by incorporating hard-magnetic 
particles, such as NdFeB magnets, into soft polymers, and the material 
has been realized in a series of soft matrices (Wang et al., 2004; Stepanov 
et al., 2012; Furusawa et al., 2019). A number of HMS robots have been 
developed in the past, to mention only a few examples, a shape- 
programmable HMS robot (Lum et al., 2016), a millimeter-scale HMS 
swimming robot (Diller et al., 2014), and a small-scale soft continuous 
robot with active steering and navigation presented (Kim et al., 2019). 
In addition, the fabrication schemes of HMS robots have made signifi-
cant progress. A series of additive manufacturing methods, such as 3D 
printing (Kim et al., 2018; Xu et al., 2019), are adopted. 

Benefiting from the large magnetic hysteresis with the high coer-
civity and high remanence of the HMS materials, programmable and 
complex deformations of magnetic driven robot becomes possible (Kim 
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and Zhao, 2022). To further develop this advantage of HMS materials, it 
is essential to investigate the deformation responses of the HMS mate-
rials. A mechanics model of the HMS materials is presented by Zhao 
et al. (Zhao et al., 2019). In their work, the magnetic Cauchy stresses of 
the ideal HMS materials, which has a residual magnetic flux density and 
the linear relationship between the induced magnetic flux density and 
the applied magnetic field, under finite deformation is presented. This 
simplification is effective but with some limitations, the model cannot 
predict the deformation of the HMS material under the high applied 
magnetic field. Based on micropolar continuum theory, Dadgar-Rad and 
Hossain (Dadgar-Rad and Hossain, 2022) developed a novel model of 
the HMS materials under finite deformation. In the above two works, the 
magnetization is assumed to be modulated by the deformation gradient. 
However, this assumption is proved to be not accurate for large strains 
by Mukherjee et al. (Mukherjee et al., 2021). Considering the dissipative 
magnetic response of the HMS materials, Mukherjee et al. (Mukherjee 
et al., 2021) present a thermodynamically consistent modeling frame-
work for the HMS materials. Their work demonstrates the magnetization 
of the HMS material only change with rotation, not with stretch. Despite 
all this, the concise form of the magnetic free energy density presented 
by Zhao et al. (Zhao et al., 2019) is attractive. We modify the magnetic 
free energy density by considering an affine rotation of the hard- 
magnetic particles to address the issue in this work. In addition, 

Mukherjee et al. (Mukherjee and Danas, 2022) present a novel me-
chanics model for both hard and soft magnetic materials. Although these 
models can accurately predict deformations of some HMS structures, the 
simulations of the HMS structures, especially complex structures, are 
time-consuming. 

To improve the efficiency of the computation models of the HMS 
structures, researchers have developed a series of HMS rod models with 
fewer degrees of freedom (DOFs). Some researchers focused on the large 
bending deformation of the HMS beams with uniform magnetization 
(Chen and Wang, 2020; Wang et al., 2020; Rajan and Arockiarajan, 
2021; Yan et al., 2022), and hyperelastic material models have been 
utilized to describe the matrix materials in their works. In addition, Chen 
et al. (Chen et al., 2020; Chen et al., 2020; Chen et al., 2023) developed 
the mechanics models of the HMS beam with nonuniform magnetiza-
tion. The viscoelastic effect in the HMS beam was investigated by 
Dadgar-Rad and Hossain (Dadgar-Rad and Hossain, 2022). Dehrouyeh- 
Semnani (Dehrouyeh-Semnani, 2021) discussed the buckling problem of 
the HMS cantilevers. However, the above-mentioned studies focus on 
the models of the HMS rod under two-dimensional deformation. The 
two-dimensional assumption may be invalid in certain situations: (1) the 
external forces other than magnetic forces exert on the beam; (2) the 
HMS beam with nonuniform magnetization is discussed; (3) the applied 
magnetic field is nonuniform. Therefore, the three-dimensional models 

Nomenclature 

L, S initial total length of the rod, arc length of the line of 
centroids in the reference configuration 

τ time 
e→1, e→2, e→3 basis of the fixed Cartesian coordinate system 

E→1, E→2, E→3 basis of the material frame 

t→1, t→2, t→3 basis of the moving frame 
V, V{

E→i

}, V{
t→i

}
matrix of a vector/tensor in fixed frame, 

material frame, and moving frame 
X1, X2 in-plane coordinates of the points 
X→, x→ position vectors in reference configuration and current 

configuration 
A0, At cross-sections in referrence configuration and current 

configuration 
φ→, Λ position vectors and rotation matrix of the centroids 

Γ→, K→ translational and rotational strain measures in material 
description 

Γ1, Γ2, Γ3 components of translational strain measures in 
material frame 

ω1, ω2, ω3 components of rotational strain measures in material 
frame 

u1, u2 in-plane displacements 
ξ1, ξ2 deformed cross-section coordinates 
γ1, γ2 components of derivatives of positions respect to S in 

current frame 
λ, λ0 stretch in material point and centroids 
F deformation gradient 
ε magnitude of elongation due to bending 
We, Ψe, Ue strain energy density, strain energy, and reduced 

strain energy 
μe, μ′

e, E initial shear modulus and Young’s modulus 
C, Ic

1 Cauchy-Green deformation tensor and its trace 
I1, I2, J moments of inertia of cross-section 
A, A1, A2 cross-sectional area and equivalent shear areas 
N→, M→ resultant force and moment in material description 

n→, m→ resultant force and moment in spatial description 
n→dis, m→dis distributed force and torque 
D, d tangent elasticity tensor in material and spatial form 

B→, H→ magnetic flux density and applied magnetic field 

B→r residual magnetic flux density in reference configuration 
B→a, B→0 applied magnetic flux density in the material points and 

centroids 
μ0 vacuum permeability 
Wm, Ψm, Um magnetic free energy density, magnetic free 

energy, and reduced magnetic free energy 
P(X1,X2, S) sum of linear terms of X1 and X2 

Φ̃, δΦ, Φε arbitrary configuration, variable in specific 
configuration, and perturbed configuration 

N→
m
, M→

m
, resultant force and moment in material description 

n→m
dis, m→m

dis distributed force and torque caused by applied 
magnetic field 

G, g weak form and reduced weak form 
δΦ, ΔΦ combine matrix of variable and increment of 

configuration 
Σ, Ξ operation matrix 
R, Rm, rdis, rm

dis combine matrix of force and moment 
L(G) linear part of the weak form 
Δg1, Δg2, Δg3, increment related part of weak form 
Lh

e typical element 
Ni shape function 
g1h

e , g2h
e , g3h

e element stiffness matrix 
Ph

e element unbalanced vector 
P, Θ first Piola-Kirchhoff stress tensor and internal power 
i, η dumb mark i = 1,2, 3 and η = 1,2 
(⋅)

′

, (.̇) derivatives of (⋅) respect to arc length S and time τ 
(⋅)∧ corresponding skew-symmetric tensor of (⋅)
δ(⋅), Δ(⋅) variable and increment of (⋅)
∇(⋅) gradient of (⋅)
(⋅)h

e approximate variable of (⋅)
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of HMS rod are desirable. Due to the challenge of dealing with the 
nonlinearity of three-dimensional finite rotations, the studies on the 
three-dimensional models of HMS rod are few. Chen et al. (Chen et al., 
2021) utilize the three Euler angles to describe the three-dimensional 
finite rotations, and based on the principle of minimum potential en-
ergy, develop the three-dimensional model of HMS rods. Sano et al. 
(Sano et al., 2022) focus on the three-dimensional Kirchhoff HMS rod in 
which have regraded the spatially varying magnetic fields. Their models 
have been proved accurate in some scenes by comparing with the ex-
periments and previous papers. However, their model also assumes that 
the cross-sections of the rod are rigid and the stress–strain relation of the 
rod is linear. The drawbacks will make their models inaccurate when the 
deformation of the rod is large, especially large stretch (Wu et al., 2022). 
To extend the application of the HMS rod, we develop a mechanics 
model of the HMS rod under three-dimensional large deformation with 
deformable cross-section, whose stress–strain relation is described by 
the incompressible Non-Hookean model. 

The rod model including both the large deformation and deformable 
cross-section can be traced back the work by Simo and Vu-Quoc (Simo 
and Vu-Quoc, 1991) in which they presented a geometrically-exact rod 
model including the torsion-warping deformation. They introduced an 
additional DOF called as “warping amplitude” and the “warping 
pattern” to describe the out-of-plane warping displacement, and this 
method has been extended to the special Euclidean group SE(3) by Rong 
et al. (Rong et al., 2020). In addition, considering the two bending- 
warping patterns and a torsion-warping pattern, Klinkel and Govind-
jee (Klinkel and Govindjee, 2003) developed an anisotropic bending- 
torsion coupling beam model. For the above models, the warping pat-
terns are prescribed, and the common methods to determine the warp-
ing patterns are experiments or 3D finite element simulations. Some 
researchers (Pimenta and Campello, 2003; Dasambiagio et al., 2009; 
Sokolov et al., 2015) derive the warping patterns from linear elasto-
statics, which is effective for small strain problems. However, the 
additional DOFs were still introduced and the coupling between the 
cross-section deformation modes was not considered. Petrov et al. 
(Petrov and Géradin, 1998; Petrov and Géradin, 1998) present rods 
model with deformable cross-section based on St. Venant solution 
without additional DOFs, however, only the small strain is included in 
their model. It is difficult to improve existing mechanics model of the 
rod-like structure actuated by a variety of stimuli including magnetic 
field based on all above models. Therefore, The soft rod model without 
additional DOFs is worth to develop. We couple the bending and stretch 
to obtain a relatively simpler cross-section deformation mode. In addi-
tion, the incompressibility of the rod materials is assumed to avoid the 
additional DOFs. Finally, we establish an explicit and analytical load- 
deformation relation of the soft rod. 

Compared with the previous work, the novel aspects and basic fea-
tures of this work can be delineated as:  

(a) The proposed model of the soft rod with deformation cross- 
section is full nonlinear, explicit, and analytical. There are no 
additional DOFs are introduced, which mean other mature rod- 
like soft structure models can be improved by easily replacing 
their constitutive equations with ours.  

(b) Considering an affine rotation of the hard-magnetic particles, a 
more accurate magnetic free energy density is presented. In 
addition, the spatial reduction of the magnetic free energy model 
with the areal change assumption is formulated. 

(c) In experiment aspect, a magnetic field driven rod-torsion exper-
iment is presented in this work, as far as we know, similar ex-
periments have not been presented in literature. 

The paper is organized as follows. In Section 2, we derive the equi-
librium equations of HMS rod, where the explicit load-deformation 
relation of the soft rod is obtained. The weak form and finite element 
formulation of the problem is presented in the Section 3. The 

performance of the model will be showed by 4 simulation examples and 
compared with 2 experiments in Section 4. In Section 5, we summarize 
our results and discuss the limitation and future work. 

2. Theoretical formulation 

This section presents the nonlinear constitutive equations of the 
straight soft rod and then describes the elastostatic model of the HMS 
rod. Finally, based on the finite element method, the computational 
model of the HMS rod is obtained. 

2.1. Kinematics 

The present work is based on the four assumptions as follows:  

(a) The rod is straight in the reference configuration.  
(b) Plane-section assumption holds. A cross-section remains to be a 

plane after deformation.  
(c) The cross-section deformation caused by axial tension or 

compression, which is isotropic and homogeneous. The cross- 
section deformation caused by bend, twist, and shear is small 
and can be ignored.  

(d) The change of the axial stretch along the axis can be ignored in 
calculating deformation gradient. 

As illustrated in Fig. 1(a), we pick the point O as the origin and 
{

e→i

}

as the basis of the fixed Cartesian coordinate system. The beam denoted 
by Ω⊂R3 is a non-denumerable set of cross-sections whose centroids are 
connected by a curve referred to as the line of centroids (Simo, 1985). 
The cross-sections can be marked by the arc length of the line of cen-
troids in the reference configuration S ∈ [0, L], and the point in the cross- 
sections can be marked by the component of the principal axis direction 
of the distance between the point and the centroid in the reference 
configuration (X1,X2), which is shown in Fig. 1(a). For a straight rod, the 
position vector X→ of the material point X can be described as 

X→(S,X1,X2) = r→0 + S E→3 + Xη E→η, S ∈ [0, L] , (1)  

where r→0 is the position vector of the starting point of the centroid in 
the reference configuration, E→3 is the unit vector parallel to the line of 
centroids in the reference configuration, and the E→η is the unit vector 
parallel to centroid principal axis direction. 

Remark 2.1. E→1, E→2, and E→3 form an orthonormal frame referred to as 
material frame, as illustrated in Fig. 1(a), such that E→3⊥A0(S), where A0 is 
the cross-section in the referrence configuration. 

To parameterize the current configuration (deformed configuration) 

of the rod, an orthonormal frame 
{

t→i(S)
}

is defined and referred to as 

moving frame, such that 

t→3⊥At(S),
∂ x→(X1 = 0,X2 = 0)

∂X1
// t→1, t→2 ≡ t→3 × t→1 , (2)  

where x→ is the position vector of the material point in the current 
configuration as shown in Fig. 1(a), and At is the cross-section in the 
current configuration. An orthogonal transformation Λ which defines 

the relationship between 
{

t→i

}

and 
{

E→i

}

is given by 

Λ(S) = t→i ⊗ E→i, t→i =Λ E→i. (3) 

The derivatives of the moving frame can be obtained by 

X. Li et al.                                                                                                                                                                                                                                        
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d
dS

t→i = ω→× t→i, ω→= ω1 t→1 + ω2 t→2 + ω3 t→3 ,

ω→∧
=

(
d
dS

Λ
)

ΛT
,

(4)  

where (⋅)∧ represents the corresponding skew-symmetric tensor of the 
axial vector (⋅). The material points X are mapped into positions x→ by 

x→(S,X1,X2) = φ→(S) + [Xη + uη(S,X1,X2) ] t→η

= φ→(S) + ξη t→η,
(5)  

where φ→ is the position of the centroid in current configuration, uη is the 
in-plane displacement, and ξη is the deformed cross-section coordinates 
which is illustrated in Fig. 1(a). 

Remark 2.2. According to Eq. (2) and Eq. (5), uη should satisfy uη(S,0,
0) = 0 and ∂u2(S,0,0)

∂X1
= 0. 

The partial derivatives of the positions with respect to S can be given 
by 

∂ x→

∂S
=

d
dS

φ→+
∂uη

∂S
t→η + ξη ω→× t→η = γη t→η + λ t→3. (6) 

In special, the variables in centroids can be obtained by 

Γη = γη(X1 = 0,X2 = 0) =
d
dS

φ→⋅ t→η,

λ0 = λ(X1 = 0,X2 = 0) =
d
dS

φ→⋅ t→3.

(7) 

According to the assumption (d), the axial stretch satisfies d
dSλ0 ≈ 0. 

The deformation gradient denoted by F is given by 

F =
∂ x→

∂Xη
⊗ E→η +

∂ x→

∂S
⊗ E→3. (8) 

The soft material in soft robots are generally incompressible, there-
fore, the F should satisfy 

|F| =
(

∂ x→

∂X1
×

∂ x→

∂X2

)

⋅
∂ x→

∂S

=

(

1 +
∂u1

∂X1
+

∂u2

∂X2
+

∂u1

∂X1

∂u2

∂X2
−

∂u2

∂X1

∂u1

∂X2

)

λ = 1.
(9) 

According to the assumption (c), the cross-section deformation is 

isotropic and homogeneous, such that 

∂u1

∂X1
=

∂u2

∂X2
=

1
̅̅̅
λ

√ − 1 ≈
1̅
̅̅̅̅
λ0

√ − 1,
∂u1

∂X2
=

∂u2

∂X1
= 0 (10) 

Combining with the conditions of REMARK 2.2, uη and ξη can be 
given by 

uη ≈

(
1̅
̅̅̅̅
λ0

√ − 1
)

Xη,

ξη ≈
Xη
̅̅̅̅̅
λ0

√ .

(11)  

Remark 2.3. Eq. (11) implies λ ≈ λ0 which mean the normal deformation 
caused by bend ξη ω→× t→η ∼ ε is small. Therefore, the rod model is not very 
accurate for the thick rod with large bending. For most HMS rod, this rod 
model is appropriate. 

We ignore the d
dSλ0, according to assumption (d), such that 

λ = λ0 +
ω1X2 − ω2X1

̅̅̅̅̅
λ0

√ ,

γ1 = Γ1 −
ω3X2
̅̅̅̅̅
λ0

√ ,

γ2 = Γ2 +
ω3X1
̅̅̅̅̅
λ0

√ .

(12) 

Substitute Eq. (6) and Eq. (10) into Eq. (8), the matrix of deformation 
gradient in the fixed frame F can be given by 

F =
tηET

η
̅̅̅
λ

√ + λt3ET
3 + γηtηET

3 . (13) 

In this work, the bold symbols represent the matrix notation of the 
corresponding vector or tensor. Without specifical mention, the ele-
ments of the matrix are the components of the vector or tensor in the 

fixed Cartesian basis 
{

e→i

}

. The F in centroids can be obtained by 

F0 = F(X1 = 0,X2 = 0)

= Λ

⎛

⎝E→η ⊗ E→η
̅̅̅̅̅
λ0

√ + λ0 E→3 ⊗ E→3 + Γη E→η ⊗ E→3

⎞

⎠.
(14) 

Fig. 1. (a) rod configurations and section shapes before and after deformation. Three orthonormal frames are fixed frame 
{

e→i

}

, material frame 
{

E→i

}

, and moving 

frame 
{

t→i

}

, respectively. (b) A schematic of the magnetization and deformation process of the hard-magnetic soft rod. 
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2.2. Constitutive equations 

The incompressible neo-Hookean model which is valid for small and 
medium strain level (Finney, 2012) is utilized to describe soft material. 
The strain energy density We can be obtained by 

We(S,X1,X2) =
μe

2
(
IC

1 − 3
)
, (15)  

where μe is the initial shear modulus, and IC
1 is the trace of the right 

Cauchy-Green deformation tensor C = FTF. Using Eq. (13), the matrix of 
C in the material frame C{

E→i

} can be given by 

C{
E→i

} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
λ

0
γ1̅ ̅̅

λ
√

0
1
λ

γ2̅ ̅̅
λ

√

γ1̅ ̅̅
λ

√
γ2̅ ̅̅

λ
√ λ2 + γ2

1 + γ2
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16) 

Thus IC
1 can be given by 

IC
1 = λ2 +

2
λ
+ γ2

1 + γ2
2

= λ2
0 +

2
λ0

+ Γ2
1 + Γ2

2

+

(

2λ0 −
2
λ2

0

)
(ω1X2 − ω2X1)

̅̅̅̅̅
λ0

√ +

(
1
λ0

+
2
λ4

0

)

(ω1X2 − ω2X1)
2

+
2ω3(X1Γ2 − X2Γ1)

̅̅̅̅̅
λ0

√ +
ω2

3

(
X2

1 + X2
2

)

λ0
+ o
(
ε2)

(17) 

By ignoring the small quantity, a reduced expression of the strain 
energy per unit of arc length in the reference configuration Ue can be 
given by   

where A is the area of the cross-section in the reference configuration, 
I1 = ∬ AX2

2dX1dX2 and I2 = ∬ AX2
1dX1dX2 are the moments of inertia of 

the cross-section, and J = I1 +I2 is the polar moment of inertia of the 
cross-section. Aη = kηA is the equivalent shear area where kη is the 
reasonable factor (Bathe, 2014). It should be noted that the reason we 
ignore the small quantity to avoid the numerical integration is to obtain 
explicit and analytical forms of the constitutive equations which can 
improve the computation efficiency. Following the previous works 
(Simo, 1985; Crisfield and Jelenić, 1999; Li et al., 2022), we define the 
translational and rotational strain measures in the material description 
Γ→(S) and K→(S) as 

Γ→= ΛT
(

d
dS

φ→− t→3

)

= Γi E→i,

K→= ΛT ω→= ωi E→i,

(19)  

where Γ3 = λ0 − 1. The strain measures is conjugate to the resultant force 
and moment (see Appendix A) over the cross-section per unit of reference 
arc length in the material description N→(S) and M→(S), which is defined as 

N→= ΛT n→=
∂Ue

∂ Γ→
,

M→= ΛT m→=
∂Ue

∂K→
,

(20)  

where n→ and m→ are the resultant force and moment in the spatial 
description. And the equilibrium equations of the (non-magnetic) rod 
which were first proposed by Simo (Simo, 1985) and may be given by 

d
dS

n→+ n→dis = 0,

d
dS

m→+
d
dS

φ→× n→+ m→dis = 0,
(21)  

where n→dis and m→dis are the distributed force and torque per unit of 
reference arc length. Substituting Eq (18) to Eq (20), we can get  

Ue(S) =
∫∫

A0

WedX1dX2 =

∫∫

A0

μe

2
(
IC

1 − 3
)
dX1dX2

= μeA
(

λ2
0

2
+

1
λ0

− 3
)

+
μeA1

2
Γ2

1 +
μeA2

2
Γ2

2 +

(
1

2λ0
+

1
λ4

0

)
(
μeI1ω2

1 + μeI2ω2
2

)
+

μeJω2
3

2λ0
,

(18)   

N{
E→i

} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μeA1Γ1

μeA2Γ2

μeA

(

λ0 −
1
λ2

0

)

−

(
1

2λ2
0
+

4
λ5

0

)
(
μeI1ω2

1 + μeI2ω2
2

)
−

μeJω2
3

2λ2
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M{
E→i

} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1
λ0

+
2
λ4

0

)

μeI1ω1

(
1
λ0

+
2
λ4

0

)

μeI2ω2

μeJω3

λ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22)   
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The matrix of tangent elasticity tensor D is defined as 

D =

⎡

⎢
⎢
⎣

∂N
∂Γ

∂N
∂K

∂M
∂Γ

∂M
∂K

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

∂2Ue

∂Γ∂Γ
∂2Ue

∂Γ∂K
∂2Ue

∂K∂Γ
∂2Ue

∂K∂K

⎤

⎥
⎥
⎥
⎦
. (23) 

And the tangent elasticity matrix in the material frame D{
E→i

} can 

be given by   

Remark 2.4. When the deformation of the beam is small, the beam model 
degenerates into the linear elastic constitutive model and the “tangent elas-
ticity matrix” degenerates into. 

lim
Γ,K→0

D{
E→i

} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

μeA1 0 0 0 0 0
0 μeA2 0 0 0 0
0 0 EA 0 0 0
0 0 0 EI1 0 0
0 0 0 0 EI2 0
0 0 0 0 0 μeJ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)  

where E = 3μe is the Young’s modulus. 

2.3. Derivation of the equilibrium equations of the HMS rod 

Now we focus on a soft rod with hard-magnetic properties (HMS 
rod), which achieves lagre deformation under the applied magnetic field 
as shown in Fig. 1(b). In this work, we assume the HMS material is an 
ideal HMS material whose magnetic flux density B→ is linearly related to 
the applied magnetic field H→ and their relation can be given by 

H→=
1
μ0

[
B→− B→r(S)

]
, (26)  

where B→r is the residual magnetic flux density in the reference config-
uration, and μ0 is the vacuum permeability. The Eq. (26) indicates that 
the residual magnetic flux density B→r is only the function of the arc 
length of the line of centroids S, which means the residual magnetic flux 
density at all points of the same cross-section is identical. Note that the 
residual magnetic flux density in the reference configuration B→r does 
not change with the deformation. In addition, The magnetic free energy 

density of the ideal HMS material can be given by (Zhao et al., 2019) 

Wm(X1,X2, S) = −
1
μ0

B→a( x→)⋅F B→r , (27)  

where B→a = μ0 H→ is the applied magnetic flux density. It should be noted 
that assuming B→a is known and unaltered is a simplification. The 
magnetic dipole moments of the hard-magnetic particles will affect the 
distribution of the applied magnetic flux density. According to the work 
presented by Mukherjee et al. (Mukherjee et al., 2021), the magnetic 
free energy density B→r should not change with the stretch when the 

matrix is far softer than the particles, because the particles can only 
rotate without deformation. To address this issue, we assume that the 
particles rotate affinely with the macroscopic rotation Λ, in which the 
shear effect is ignored, and the magnetic free energy density of the ideal 
HMS material can be modified as 

Wm(X1,X2, S) = −
1
μ0

B→a( x→)⋅Λ B→r

= −
1
μ0

B→0(S)⋅Λ B→r + Z(X1,X2, S),
(28) 

In particular, the applied magnetic flux density in the centroid is 
B→0 = B→a(φ→), Z(X1,X2, S) is the sum of linear terms of X1 and X2. In this 
work, only the gradient invariant applied magnetic field is considered. 
Then, the reduced expression of magnetic free energy per unit of 
reference arc length Um can be given by 

Um =

∫∫

A0

WmdX1dX2 = −
A
μ0

B→0⋅Λ B→r. (29) 

Consider an arbitrary configuration of the rod Φ̃ =
{

φ̃, Λ̃
}

, which is 

specified by the position of its line of the centroids and the moving 
frame. In this work, a variable with a tilde above it represents the var-
iable in the specific configuration Φ̃. In addition, we consider any 

infinitesimal admissible variation δΦ =
{

δ φ→, δ θ→
}

, and the perturbed 

configuration Φε =
{

φ→ε,Λε

}
can be given by 

φ→ε = φ̃ + δ φ→,

Λε = exp
(

δ θ→
)

Λ̃.
(30) 

D{
E→i

}

= μe

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

0 A2 SYM.

0 0 A

(

1 +
2
λ3

0

)

+

(
1
λ3

0
+

20
λ6

0

)
(
μI1ω2

1 + μI2ω2
2

)
+

μJω2
3

λ3
0

0 0 − ω1I1

(
1
λ2

0
+

8
λ5

0

)

I1

(
1
λ0

+
2
λ4

0

)

0 0 − ω2I2

(
1
λ2

0
+

8
λ5

0

)

0 I2

(
1
λ0

+
2
λ4

0

)

0 0 −
μJω3

λ2
0

0 0
J
λ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(24)   
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Based on Eq. (30), the variation of Λ can be given by 

δΛ = exp
(

δ θ→
∧)

Λ̃ − Λ̃ = δ θ→
∧

Λ̃. (31)  

The variation of the strain measures Γ→ and K→ can be given by 

δ Γ→= Λ̃
T[

δ φ→
′

+ (φ̃
′

)
∧δ θ→

]
,

δK→= Λ̃
T
δ θ→

′

.

(32)  

The variation of Um can be given by 

δUm = − ñm
dis⋅δ φ→− m̃m

dis⋅δ θ→+ Ñ
m

⋅δ Γ→+ M̃
m

⋅δK→, (33)  

where n→m
dis and m→m

dis are the distributed force and torque per unit of 

reference arc length caused by applied magnetic field, and N→
m 

and M→
m 

are the resultant force and moment in the material description caused by 
applied magnetic field. Substituting Eq. (29) into Eq.(33), we can get 

n→m
dis =

A
μ0

(

∇B→0

)T

Λ B→r ,

m→m
dis =

A
μ0

(
Λ B→r

)
× B→0,

(34)  

where ∇B→0 is the gradient of B→0, and 

Nm{
E→i

} = Mm{
E→i

} =

⎡

⎣
0
0
0

⎤

⎦. (35) 

Hence, the equilibrium equations of the HMS rod can be given by 

d
dS

n→+ n→dis + n→m
dis = 0,

d
dS

m→+
d
dS

φ→× n→+ m→dis + m→m
dis = 0,

(36)  

3. Finite element formulation 

In this section, we present the weak form of the problem discussed in 
Section 2, and its linearization is deduced. Next, we consider the finite 
element formulation of the lineraization of the weak form. In addition, 
the matrix equations of the problem is presented. 

3.1. Weak form of the equilibrium equations of the HMS beam 

The weak form of the equilibrium equations of the HMS rod in matrix 
form can be given by 

G(Φ
∼

, δΦ) =

∫

L

[
d
dS

nT δφ +

(
d
dS

m +
d
dS

φ∧n
)T

δθ

]

dS

+

∫

L

[(
ndis + nm

dis

)T δφ +
(
mdis + mm

dis

)T δθ
]
dS = 0.

(37) 

Integration by parts of Eq. (37) lead to 

G =

∫

L

[
nT(δφ’ − δθ∧φ’) + mT δθ’ ]dS

−

∫

L

[(
ndis + nm

dis

)T δφ +
(
mdis + mm

dis

)T δθ
]
dS + b,

(38)  

where b is the value related to prescribed boundary conditions. In 
addition, the weak form in the material description can be expressed as 

G =

∫

L

[
NT ΛT(δφ’ − δθ∧φ’) + MT ΛT δθ’ ]dS

−

∫

L

[(
ndis + nm

dis

)T δφ +
(
mdis + mm

dis

)T δθ
]
dS + b.

(39) 

The weak form can be expressed as a more compact form by the 
following notation 

δΦ =

[
δφ

δθ

]

, Σ =

[
Λ 0

0 Λ

]

, ΞT =

⎡

⎢
⎢
⎢
⎣

d
dS

1 φ’∧

0
d
dS

1

⎤

⎥
⎥
⎥
⎦
,

R =

[
N

M

]

, rdis =

[
ndis

mdis

]

, rm
dis =

⎡

⎣
nm

dis

mm
dis

⎤

⎦.

(40)  

With the notation, the weak form can be recast as 

G =

∫

L

[(
ΞT δΦ

)T ΣR − δΦT ( rdis + rm
dis

) ]
dS + b

=

∫

L
g(S)dS + b

(41)  

where g is the contribution per unit of the reference arc length to the 
weak form. 

3.2. The linearization of the weak form 

In our model, the gradient of B→0 is a constant. In order to obtain the 
tangent stiffness matrix, we introduce the linear part of the weak form 
L(G) defined by 

L(G) = G(Φ
∼

, δΦ, 0) +
∫

L

[
∂g(Φ

∼

, δΦ,ΔΦ)

∂ΔΦ

⃒
⃒
⃒
⃒

ΔΦ=0
ΔΦ

]

dS, (42)  

where ΔΦ is the incremental displacement and rotation field defined as 

ΔΦ =

[
Δφ
Δθ

]

. (43) 

The weak form in the second term of Eq. (42) can be given by 

g(Φ
∼

, δΦ,ΔΦ) = g(Φ, δΦ), (44)  

and the update scheme of Φ can be given by 

φ→= φ̃ + Δ φ→,

Λ = exp
(

Δ θ→
)

Λ̃.
(45) 

The second term in the Eq. (42) can be divided into four parts: the 
contribution associated with 

The elastic resultant force and moment Δg1, the geometric Δg2, and 
the magnetic distributed force and moment Δg3 

Δg1 =

∫

L

[

(Ξ
∼T

δΦ)
T Σ
∼
(

∂R
∂ΔΦ

⃒
⃒
⃒
⃒

ΔΦ=0

)

ΔΦ
]

dS,

Δg2 =

∫

L

[

R
∼ T ∂
(
ΣT ΞT δΦ

)

∂ΔΦ

⃒
⃒
⃒
⃒

ΔΦ=0
ΔΦ

]

dS,

Δg3 = −

∫

L

[

δΦT
(

∂rm
dis

∂ΔΦ

⃒
⃒
⃒
⃒

ΔΦ=0

)

ΔΦ
]

dS.

(46) 

The linearized elastic force can be expressed by 

∂R
∂ΔΦ

⃒
⃒
⃒
⃒

ΔΦ=0
ΔΦ = D

∼

⎡

⎢
⎢
⎢
⎣

∂Γ
∂Δφ

∂Γ
∂Δθ

∂K
∂Δφ

∂K
∂Δθ

⎤

⎥
⎥
⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

ΔΦ=0

ΔΦ

= D
∼

Σ
∼T

Ξ
∼T

ΔΦ.

(47) 

In addition, the first part can be given by 

Δg1 =

∫

L

[
(Ξ
∼T

δΦ)
T d
∼

Ξ
∼T

ΔΦ
]
dS, (48) 
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where d
∼

= Σ
∼

D
∼

Σ
∼T 

is the spatial form of the tangent elasticity tensor. 
The geometric part contribution Δg2 can be given by 

Δg2 =

∫

L

[(
YT δΦ

)T Q
∼

YT ΔΦ
]
dS, (49)  

where the Y and Q are defined by 

Y =

⎡

⎢
⎢
⎣

d
dS

1 0 0

0 d
dS

1 1

⎤

⎥
⎥
⎦ , Q =

⎡

⎢
⎢
⎣

0 0 − n∧

0 0 − m

n∧ 0 nφ’T
− nT φ’1

⎤

⎥
⎥
⎦ . (50) 

Finally, the last part Δg3 can be given by 

Δg3 = −

∫

L

(
δΦT q∼ΔΦ

)
dS, (51)  

where q is defined by 

q =

A
μ0

⎡

⎣
0 − (∇B0)

T
(ΛBr)

∧

(ΛBr)
∧
∇B0 B∧

0 (ΛBr)
∧

⎤

⎦.
(52)  

3.3. Finite element approximation 

A standard finite element mesh [0, L] = ∪
ne
e=1Lh

e is considered, where 
Lh

e is a typical element with a length h, and ne is the number of elements. 
The approximate incremental displacement and rotation field ΔΦh are 
given by 

Δφh(S) =
∑nn

i=1
Ni(S)Δφh

i , Δθh(S) =
∑nn

i=1
Ni(S)Δθh

i , (53)  

where nn is the number of the nodes, Ni is the shape function associated 
with the node i, and Δφh

i , Δθh
i are the approximated incremental 

displacement and rotation field at the node i. 
Substiting the Eq. (53) into the Eq. (42), the weak form of the 

problem related to the element Ih
e can be given by 

L
[
Gh

e

]
= δΦhT[( g1h

e + g2h
e + g3h

e

)
ΔΦh

e + Ph
e

]
, (54)  

where gih
e is the element stiffness matrix associated with Δgi, and Ph

e is 
the element unbalanced vector. We denote the submatrices coupling 
node I and J in gih

e by gih
eIJ. From Eq. (48), the g1h

eIJ can be expressed by 

g1h
eIJ =

∫

Lh
e

(

Ξ
∼h

I d
∼h

eΞ
∼hT

J

)

dS, (55)  

where d
∼h

e = Σ
∼h

D
∼h

e Σ
∼hT

, and the Ξ
∼h

I is defined as 

Ξ
∼h

I =

[
N’

I 1 0

− NIφ
∼∧’

N’
I 1

]

. (56)  

The third part g2h
eIJ associated with the geometric contribution can be 

given by 

g2h
eIJ =

∫

Lh
e

[
0 − N’

I NJ(n
∼h
)
∧

NIN’
J(n

∼h
)
∧

− N’
I NJ(m

∼ h
)
∧
+ NINJ

{
(n∼

h
)φ’∼ + (n∼

h
)

T φ’∼1
}

]

dS.

(57) 

The last term g3h
eIJ , which is associated with the distributed magnetic 

force and moment, can be given by 

g3h
eIJ =

∫

Lh
e

A
μ0

⎡

⎢
⎣

0 NINJ(∇B0)
T
(

Λ
∼

Br

)∧

− NINJ

(
Λ
∼

Br

)∧
∇B0 − NINJB∧

0

(
Λ
∼

Br

)∧

⎤

⎥
⎦dS (58) 

Finally, Ph
eI , the element unbalanced vector at the node I, is given by 

Ph
eI =

∫

Lh
e

{

Ξ
∼h

I

(
R
∼ h

+ R
∼ hm)

−

[
NI1 0
0 NI1

](

r∼
h
dis + r∼

hm
dis

)}

dS. (59)  

4. Experiments, numerical simulation, and validation 

In this section, some numerical examples and experiments are pre-
sented to verify the accuracy of the model. The elements used in this 
section are quadratic three-node elements, and the reduced integration 
is utilized to avoid the shear locking (Simo and Vu-Quoc, 1986). The 
iterative solution procedure follows Li et al. (Li et al., 2022). 

4.1. Experiment methods 

The hard-magnetic soft materials of rods are prepared by mixing the 
NdFeB powder with the silicon rubber E605 (Hong Ye Silicone). The 
mixture (Mass density ρ = 1869.7 ± 32.4kg/m3) is poured into the mold 
prepared in advance and then cured for 4 h at 45℃. After demoulding, 
the material is magnetized by applying a strong magnetic field. The 
strong magnetic field is producted by a high magnetic field generator 
(Shen Zhen He Sheng Hui Electronics Co. Ltd) as shown in Fig. 2(a). 

We obtain the initial shear modulus of the material by fitting 
stress–strain data with the incompressible neo-Hookean model. The 
stress–strain data is presented by the uniaxial tensile experiments which 
are conducted on ESM303 force test stands (Mark-10) depicted as Fig. 2 
(b). As some researchers mentioned (Garcia-Gonzalez et al., 2023), the 
dipole–dipole interactions of the particles will enhance the stretch 

Fig. 2. (a) High magnetic field generator. (b) ESM303 force test stands. (c) applied magnetic field generating device.  
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stiffness of the material under magnetization. To investigate the effect of 
dipole–dipole interactions, we measure the initial shear modulus of the 
hard-magnetic soft materials before and after magnetization. The initial 
shear modulus of the material after magnetization is measured as μe =

38.07 ± 0.37 kPa, and the modulus before magnetization is measured 
as μ′

e = 36.58 ± 0.96 kPa. The results proves that the dipole–dipole in-
teractions indeed affect the stretch stiffness of the material but is not 
large. Therefore, we assume the initial shear modulus of the material 
after magnetization μe is the shear modulus used in the implement. It 
should be noted this is a simplification, because the effect of dipo-
le–dipole interactions is anisotropy and don’t obey the Neo-Hookean 
model. 

In addition, the residual magnetic flux density of the material should 
be measured. We prepare an axially magnetized straight rod with a 
square cross-section and measure its surface magnetic flux density 
⃒
⃒
⃒
⃒B
→

surface

⃒
⃒
⃒
⃒ above the center of the top surface by TM5100 Gaussmeter 

(Tunkia Co., Ltd). We assume the material under magnetization is an 
uniformly magnetized body, and the relation between residual magnetic 
flux density and surface magnetic flux density can be derived by volume 
integration as 

⃒
⃒
⃒B
→

r

⃒
⃒
⃒ =

π
⃒
⃒
⃒
⃒B
→

surface

⃒
⃒
⃒
⃒

[

arctan
(

a2

2d
̅̅̅̅̅̅̅̅̅̅̅̅
2a2+4d2

√

)

− arctan
(

a2

2(d+L)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a2+4(d+L)2

√

)], (60)  

where a is the side length of the cross-section, L is the length of the rod, 
and d is the distance between measure point and the top surface. The 
shape of the rod is the same as the rod in Section 4.3, where a = 7mm, 
L = 30mm, and d = 0.1 mm. The fabricated hard-magnetic soft rod 
(Section 4.3 and Section 4.4) possesses the residual magnetic flux den-

sity 
⃒
⃒
⃒B
→

r

⃒
⃒
⃒ = 78.52 ± 0.74 mT. We assume the shape of sample will not 

affect the residual magnetic flux density. 
We generate the applied magnetic field by the device shown in Fig. 2 

(c). When we put a current into the Helmholtz coil, a homogeneous 
magnetic field will be generated within the coil. And the amplitude of 
the magnetic field can be controlled by the direct-current power source. 
The amplitude of the applied magnetic flux density is measured by the 
TM5100 Gaussmeter (Tunkia Co., Ltd). 

4.2. Deformation of a straight soft rod subjected to fixed-end load 

Consider a straight rod of length L = 100 mm aligned with the x-axis. 
It is subjected to a concentrated force F in the negative z-direction on its 
free end, as shown in Fig. 3(a). The cross-section of the rod is a square 
with a side length a = 20 mm, and the reasonable factor k1 = k2 = 5

6. 
The initial shear modulus of the rod is 100 kPa. In this subsection, we 
compare the simulation results obtained by different computation 
methods. Therefore, we do not apply the modulus of the material 
applied in the experiments, in addition, the weight of the rod is ignored 
in the simulations in the subsection. The magnitude of the tip 
displacement in x-direction and z-direction are donated by δx and δz, 
respectively. In this case, the rod will produce three deformation modes: 
bending, shearing, and stretching. The total displacement of the rod 
subjected to a large concentrated force F = 2 N is shown in Fig. 3(b). 

Fig. 3(c) and (d) show the magnitude of the tip displacement of the 
results obtained with (i) three-dimensional soild finite element model 
(14936 tetraheron elements), (ii) the present HMS rod model that con-
siders the nonlinear stress–strain relation and the areal change of the 
cross-section with 3 elements (quadratic elements) and (iii) the classic 
geometrically exact beam (C-GEB) model (Simo and Vu-Quoc, 1986) 
with rigid cross-section assumption and linear stress–strain relation with 
3 elements (quadratic elements). The rusults obatined with our model 
with few elements show great agreement with the rusults obatined with 
three-dimensional soild finite element model. Therefore, we conclude 
that our model is efficient and accurate for predicting the deformation of 
soft beams when there are extra load other than the magnetic field load. 

Fig. 3. (a) Schematic of the rod subjected to a concentrated force F. The rod 
length, side length of cross-section, and the magnitude of the tip displacement 
are prescribed as L = 100 mm, a = 20 mm, δx and δz. (b) Total displacement of 
the rod subjected to a concentrated force F = 2 N. (c) magnitudes of the tip 
displacement in x-direction δx with the different concentrated force of the 
simulation results. Black line are the results obtained with three-dimensional 
soild finite element model (14936 tetraheron elements), pink dots are the re-
sults obtained with present HMS rod model with 3 elements (quadratic ele-
ments), and blue dots are the results obtained with classic geometrically exact 
beam (C-GEB) model with 3 element (quadratic elements). (d) magnitudes of 
the tip displacement in z-direction δz with the different concentrated force of 
the simulation results. The meaning of the legend is the same as that in (c). 

Fig. 4. (a) Schematic of the vertically placed magnetized straight rod applied a 
horizontal applied magnetic flux density B→a. The rod length and side length of 
cross-section are prescribed as L = 30 mm and a = 7 mm. The residual mag-
netic flux density of the rod B→r is along the axis of the rod, and when the rod is 
subjected to the applied magnetic field, the rod will bend in the direction of the 

magnetic field. (b) The Configuration before deformation 
⃒
⃒
⃒B
→

a

⃒
⃒
⃒ = 0 mT an 

d after deformation 
⃒
⃒
⃒B
→

a

⃒
⃒
⃒ = 13.79 mT. The displacements of the tip of the rod 

are expressed in u and w. (c) magnitudes of the tip displacements with the 
different applied magnetic flux density of the experimental and simulation re-
sults. Black line is the simulation results of the horizontal displacement u, red 
line is the simulation results of the vertical displacement w, blue dot is the 
experimental results of the horizontal displacement u, and purple dot is the 
experimental results of the vertical displacement w. 
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4.3. Bending of a hard-magnetic soft rod under a constant field 

In this subsection, we consider an axially magnetized straight rod 
aligned with the negative z-axis applied a x-direction applied magnetic 
flux density B→a , as shown in Fig. 4(a). The rod is subjected to gravity 
and the applied magnetic field, causing it to bend to follow the direction 
of the magnetic field. 

To validate the numerical predictions for the bending of the hard- 
magnetic soft rod experimentally, we prepared a straight rod of length 
L = 30 mm. The cross-section of the rod is a square of side length a =

7 mm. Fig. 4(b) shows the rod configuration before and after deforma-
tion in the experiment, and we measure the displacements of the tip of 
the rod u and w by the photos of the experiment. 

In the experiment, the applied magnetic flux density slowly increases 
from 0 to 14 mT, and Fig. 4(c) shows the experiment and simulation 
results of the tip displacements. Surprisingly, the experimental results 
are in high agreement with the results predicted by the simulation. It’s 
worth mentioning that we calculated such good results with only 5 el-
ements. For these reasons, we conclude that our model is very accurate 
and efficient for predicting the bending and shear deformation of the 
HMS rod. 

4.4. Torsion of a hard-magnetic soft rod under a constant field 

To further validate our model for the case of the torsion of the HMS 
rod, a horizontally magnetized cylindrical hard-magnetic soft rod of 
length L = 30 mm and diameter d = 7 mm was prepared, and we applied 
a y-direction applied magnetic flux density B→a orthogonal to the x- 
dirction residual magnetic flux density of the rod B→r to twist the rod 
shown as Fig. 5(a). In this case, the gravity play an insignificant role in 
the deformation of the beam. Therefore we can ignore it. We adhered a 
triangular piece of yellow paper on the tip of the rod, and slowly in-
crease the applied magnetic flux density from 0 to 14 mT as shown in 
Fig. 5(b). The torsion angle θ of tip of the rod can be measured by the 
directions of the paper piece before and after deformation. During the 
simulation, five elements are used to calculate this case. 

Fig. 5(c) shows the torsion angle of tip of the rod enhances with the 
increase of the applied magnetic flux density, and the simulation results 
(black line) fit the experimental results (blue dot) well, the error be-
tween simulation and experiment is within 10%. Particularly, the 
simulation results (torsion angle) is generally larger than the experi-
mental results. In our opinion, the fact that the residual magnetic flux 
density of the rod did not point perfectly along the x-axis caused this 
discrepancy. Due to the absence of a flat-sided face to serve as a direction 
indicator, cylindrical rods with horizontal magnetization are more 
challenging to align in experiments than square or axially magnetized 
rods. When the angle between the residual magnetic flux density and the 
applied magnetic flux density is slightly less than 90◦, the torsion angle 
obtained in the experiment will be undersized. In addition, the torsion 
angle measurement will also introduce some errors. 

Fig. 5. (a) Schematic of the vertically placed horizontally magnetized cylin-
drical rod applied an orthogonal applied magnetic flux density B→a. The rod 
length and diameter of cross-section are prescribed as L = 30 mm and d =

7 mm. The residual magnetic flux density of the rod B→r is perpendicular to the 
applied magnetic flux density, and when the rod is applied the applied magnetic 
field, the rod will twist. (b) The Configuration before deformation (blue line) 
⃒
⃒
⃒B
→

a

⃒
⃒
⃒ = 0 mT and after deformation (red line) 

⃒
⃒
⃒B
→

a

⃒
⃒
⃒ = 14.20 mT. The torsion 

angle of the rod are expressed in θ. (c) magnitudes of the torsion angle with the 
different applied magnetic flux density of the experimental and simulation re-
sults. Black line is the simulation results of the torsion angle θ, and blue dot is 
the experimental results of the torsion angle θ. 

Fig. 6. (a) The undeformed configuration of the horizontally magnetized hard-magnetic soft rod fixed at one end. The rod length and side length of cross-section are 
prescribed as L = 100.0 mm and a = 10.0 mm. The residual magnetic flux density of the rod B→r is aligned with x-direction (b) The deformed shapes of the rod with 
the different gradient of the applied magnetic flux density K = k mT/mm. 
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4.5. 3D deformation of a straight soft rod under constant gradient field 

To demonstrate our model’s ability to predict 3D deformation of the 
hard-magnetic soft rod, a horizontally magnetized hard-magnetic soft 
rod shown in Fig. 6(a) is considered. The rod is aligned with the z-axis 
and one end is fixed at the origin, and its residual magnetic flux density 
along the x-direction. The length of rod is L = 100.0 mm, and the cross- 
section of rod is a square with a side length of a = 10.0 mm. The initial 
shear modulus of the rod is 40 kPa. Similar to the Section 4.2, the weight 
of the rod is ignored. The HMS rod possesses the residual magnetic flux 

density of 
⃒
⃒
⃒B
→

r

⃒
⃒
⃒ = 100 mT. In this case, a bending moment (not caused by 

the applied magnetic field) in the x-direction of 
⃒
⃒
⃒M
→

x

⃒
⃒
⃒ = 6 N⋅mm is 

applied at the free end of the rod firstly, and then a constant gradient 
magnetic flux density B→a = Kx e→1 is applied, where K = k mT/mm is the 
gradient of the applied magnetic flux density. Fig. 6(b) shows the 
deformed shapes of the rod with the different amplitudes of the gradient 
of the applied magnetic flux density k. 

5. Conclusions 

In this work, we have formulated a mechanics model considering 
cross-section deformation for the HMS rod under three-dimensional 
large deformation. In our model, we assume a simple cross-section 
deformation mode, and then define the deformation gradient of the 
material by the parameters in the centroid-based description, as shown 
in Eq. (14). The incompressible neo-Hookean model is used to describe 
the soft material, and the constitutive equations of the soft rod Eq. (22) is 
obtained by reducing the strain energy into the centroid-based 
description. The HMS material is assumed to be ideal HMS material, 
and the equilibrium equations of the HMS rod are given by Eq. (34), Eq. 
(35), and Eq. (36). It is worth mentioning that our model include the 
gradient magnetic field. In Section 3, the finite element formulation and 
the matrix equations of the problem are presented. 

To verify the accuracy and efficacy of our model, four simulation 
examples and two experiments about the HMS beam are presented. In 
the first example (Section 4.2), we study the deformation of a straight 
soft rod subject to fixed-end load, and compare the differences between 
the results obtained with 3D soild finite element model, our HMS rod 
model, and the classic geometrically exact beam model. The perfor-
mance of the HMS model is far better than the classic geometrically 
exact beam model. In the second and third examples (Section 4.3 and 
4.4), the bending and torsion of the HMS rod under a constant field are 
studied. All simulation results calculated by using 3 or 5 elements are 
compared with the experimental results, and the error is within 10%. 
Finally, we discuss the 3D deformation of the HMS rod under constant 
gradient field. 

Although our model performs excellently in predicting the 

deformation of the HMS rod, some limitations still exist and should be 
discussed: (1) The constitutive model of the HMS material used in this 
work give a linear relation between the applied magnetic field and the 
magnetic flux density. This mean our model is appropriate when applied 
magnetic field is not large. In addition, in this constitutive model, the 
dipole–dipole interactions are not considered. Our experiments show 
the error induced by ignoring this effect is small, however, when the 
mass fraction of magnetic particles increases, this effect cannot be 
ignored. Incorporating the dipole–dipole interactions and the nonlinear 
constitutive law into the rod model is an important task. (2) The dis-
tribution of the applied magnetic flux density in our model is a simpli-
fication, and the real distribution should be calculated by 3D 
electromagnetic finite element simulations of the surrounding environ-
ment. Including the electromagnetic field in the environment around the 
rod into our model is a herculean and interesting direction of our future 
work. (3) The deformation and shape of the rod in our model are also 
limited. The cross-section deformation is assumed to be dominated by 
the deformation caused by tension or compression. Therefore the model 
might not be appropriate for the thick rod with large bending. And the 
torsion-warping deformation is ignored in this model, which will cause a 
higher torsion stiffness with the noncircular cross-section than the actual 
situation. Considering the cross-section deformation caused by large 
bending, torsion, and shear is an unavoidable challenge in our future 
work. In addition, the curved rod also should be studied. 

Overall, this model obtained in this paper can help the researchers to 
design and optimize the shape of the HMS rod used in the soft robots, 
mechanical sensors, and so on. Researchers can develop a more complex 
structure model of HMS material based on this work. 
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Appendix A 

Before building the constitutive equations, the appropriate strain measures conjugate to the resultant force and moment should be defined. Simo 
(Simo, 1985) proved Γ→ and K→ conjugate to N→ and M→with rigid cross-section assumption. In this section, we proved that Γ→ and K→ also conjugate to N→

and M→ with our kinematical assumptions. In this discussion, we consider that all variables are functions of time τ. 
The first Piola-Kirchhoff stress tensor P(X1,X2, S, τ) can be defined as 

P = T→1 ⊗ E→1 + T→2 ⊗ E→2 + T→3 ⊗ E→3. (61) 

Therefore, n→ and m→ can be easily expressed by 

n→=

∫∫

A0

P E→3dX1dX2 =

∫∫

A0

T→3dX1dX2,

m→=

∫∫

A0

( x→− φ→) × P E→3dX1dX2 =

∫∫

A0

( x→− φ→) × T→3dX1dX2.

(62) 
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The internal power Θ can be expressed as 

Θ =

∫∫∫

A0×L
P : ḞdX1dX2dS. (63)  

Using Eq. (13), the time derivative of the deformation gradient can be given by 

Ḟ =

(

w→× t→η

)

⊗ E→η

̅̅̅
λ

√ −
λ̇

2λ
̅̅̅
λ

√ t→η ⊗ E→η +

[
∂ φ̇→˙

∂S
+ ω̇→˙

× ( x→− φ→)

]

⊗ E→3 + {ω→× [w→× ( x→− φ→) ] } ⊗ E→3

−

⎡

⎣ λ̇0

2λ0
ω→× ( x→− φ→)

⎤

⎦⊗ E→3,

(64)  

where w→ is defined by 

w→× t→i =
˙t→
˙

i,

w→∧
=

(
∂
∂τΛ

)

ΛT (65) 

Thus, it follows that 

P : Ḟ =

w→⋅
(

t→η × T→η

)

̅̅̅
λ

√ +
∂ φ̇→˙

∂S
⋅ T→3 + ω̇→˙⋅

[

( x→− φ→) × T→3

]

+ {ω→× [w→× ( x→− φ→) ] }⋅ T→3

−
λ̇

2λ
̅̅̅
λ

√ t→η⋅ T→η −

⎡

⎣ λ̇0

2λ0
ω→× ( x→− φ→)

⎤

⎦⋅ T→3.

(66) 

With the angular momentum balance condition ∂ x→
∂Xη

× T→η +
∂ x→
∂S × T→3 = 0 and Eq. (10), the first term in Eq. (66) can be given by 

w→⋅
(

t→η × T→η

)

̅̅̅
λ

√ = w→⋅
(

∂ x→

∂Xη
× T→η

)

= − w→⋅
(

∂ x→

∂S
× T→3

)

= − T→3⋅
{

w→×
∂ φ→⋅

∂S
+ w→×

[
ω→⋅

× ( x→− φ→)
]}

.

(67) 

For the majority of beams, the normal stresses between longitudinal fibers of rod are small, such that 

t→1⋅ T→1 ≈ t→2⋅ T→2 ≈ 0. (68) 

The second and last terms in Eq. (66) can be expressed as 

∂ φ→⋅

∂S
⋅ T→3 −

⎡

⎣ λ̇0

2λ0
ω→× ( x→− φ→)

⎤

⎦⋅ T→3 =
∂ φ→⋅

∂S
⋅

⎧
⎨

⎩
1 −

t→3 ⊗ [ω→× ( x→− φ→) ]

2λ0

⎫
⎬

⎭
T→3

=
∂ φ→⋅

∂S
⋅[1 − O(ε) ]T→3 ≈

∂ φ→⋅

∂S
⋅ T→3.

(69) 

Substituting Eq. (66), Eq. (67), Eq. (68), and Eq. (69) into Eq. (63), the internal power Θ can be expressed as 

Θ =

∫∫∫

A0×L

{(
∂ φ→⋅

∂S
− w→×

∂ φ→

∂S

)

⋅ T→3 +
{

ω→× [w→× ( x→− φ→) ] − w→×
[

ω→⋅
× ( x→− φ→)

]}
⋅ T→3 + ω→⋅⋅

[

( x→− φ→) × T→3

]}

dX1dX2dS

=

∫∫∫

A0×L

{(
∂ φ→⋅

∂S
− w→×

∂ φ→

∂S

)

⋅ T→3 + [(ω→× w→) × ( x→− φ→) ]⋅ T→3 + ω→⋅⋅
[

( x→− φ→) × T→3

]}

dX1dX2dS

=

∫∫∫

A0×L

{(
∂ φ→⋅

∂S
− w→×

∂ φ→

∂S

)

⋅ T→3 + (ω→× w→)⋅
[

( x→− φ→) × T→3

]

+ ω→⋅⋅
[

( x→− φ→) × T→3

]}

dX1dX2dS

=

∫

L

(
∂ φ→⋅

∂S
− w→×

∂ φ→

∂S

)

⋅ n→+
(

ω→⋅
− w→× ω→

)
⋅m→dS

=

∫

L

[
∂
∂τ

(

Λ Γ→+ t→3

)

− w→∧Λ
(

Γ→+ E→3

)]

⋅
(

ΛN→
)
+

[
∂
∂τ

(
ΛK→

)
− w→∧ΛK→

]

⋅
(

ΛM→
)

dS

=

∫

L

[

Λ
⋅ (

Γ→+ E→3

)

+ Λ Γ→
⋅
− Λ

⋅
ΛT Λ

(

Γ→+ E→3

)]

⋅
(

ΛN→
)
+
[
Λ
⋅

K→+ ΛK→
⋅
− Λ

⋅
ΛT ΛK→

]
⋅
(

ΛM→
)

dS

=

∫

L

[
(Λ Γ→

⋅
)⋅
(

ΛN→
)
+
(

ΛK→
⋅)

⋅
(

ΛM→
) ]

dS =

∫

L

(
N→⋅ Γ→

⋅
+ M→⋅K→

⋅)
dS.

(70)  

X. Li et al.                                                                                                                                                                                                                                        



International Journal of Solids and Structures 279 (2023) 112344

13

Therefore, in our model, Γ→ and K→ conjugate to N→ and M→. 
Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijsolstr.2023.112344. 
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