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A B S T R A C T   

Magnetorheological elastomers are active materials which can be actuated by the applied mag-
netic field. Hard magnetic soft (HMS) materials, a type of magnetorheological elastomers, show 
great potential in the fields of biomedical engineering and soft robotics, due to their short 
response time, remote operation, and shape programmability. To exploit its potential, a series of 
theoretical frameworks of HMS rods have been developed, but they are mainly limited to the 
static rod models or classical curved rod models that fail to consider the effect of the “initial 
curvature” on the distribution of the stress. In this work, we develop a curved rod theory to 
predict the 3D dynamic motion of the rod-like HMS robotics under large deformation. Based on 
the geometrically exact rod theory, we include the heterogeneous initial length of the longitudinal 
fiber caused by “initial curvature” into our model and obtain the reduced balance equations of the 
HMS robotics. As a result, the “tension-bending” and “shear-torsion” coupling effects of curved 
rods emerge in the present model. A numerical implementation of our model based on the 
classical Newmark algorithm is presented. To validate our model, three numerical examples, 
including the dynamic snap-through behavior of a bistable arch, are performed and compared 
with the simulation or experiment results reported in literatures, which show a good agreement. 
Finally, we experimentally study the 2D and 3D static and dynamic motion of a quarter arc HMS 
robotic arm under an applied magnetic field of 10 mT, and our model gives a satisfactory pre-
diction, especially for static deformation.   

1. Introduction 

Magnetorheological elastomers are a type of active soft materials which can deform under the applied magnetic field. Due to their 
short response time, wireless control, and superior performance in closed space, magnetorheological elastomers exhibit enormous 
potential in the field of biomedical engineering [1,2]. In recent years, hard magnetic soft (HMS) materials, a kind of magneto-
rheological elastomers that possess high coercivity and high remanence, have attracted the interest of researchers [3]. HMS materials 
commonly are fabricated by mixing the soft matrices and the embedded hard-magnetic particles, such as NdFeB magnets [4–6]. The 
high remanence of the HMS materials allows them to achieve complex and programmable deformation, which is attractive to the fields 
of soft robotics, sensors, biomedical devices, and microfluidic devices [7]. Many hard-magnetic soft robotics have been developed in 
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the past decade. Wang et al. [8] designed a magnetic continuum robot with different deformation modes under the magnetic fields in 
different directions for vascular interventional navigation surgery. Diller et al. [9] presented a magnetic swimming robot with the 
heterogeneous residual magnetic flux density distribution. Lum et al. [10] proposed a universal programming methodology for the 
shape -programmable magnetic soft actuators, and created some biomimetic robots based on the method. A magnetic soft continuum 
robot which can navigate through a 3D cerebrovascular phantom network have been developed by Kim et al. [11]. In addition, a series 
of interesting applications of HMS materials have been developed, such as the magnetic nanocomposite tactile sensor [12], the tunable 
metamaterials triggered by magnetic field [13–15], and the magnetic polymers for magnetophoretic separation in microfluidic devices 
[16]. 

To further exploit the potential of the HMS materials, it is necessary to develop the mechanics model to predict their deformation 
[17]. In a top-down approach, Zhao et al. [18] presented a decoupled model for the pre-magnetized HMS materials. In their work, the 
unaltered applied magnetic flux density and the linear relation between the magnetic field and magnetic flux density were assumed to 
obtain a simple and concise magnetic Helmholtz free energy. Furthermore, the dipole–dipole interactions and the heterogeneous 
pre-magnetization distribution were ignored in their model. Despite the limitations, their model showed desirable predictive capability 
for slender structures under small applied magnetic fields. The viscoelastic effect of the HMS material was analyzed by Garcia-Gonzalez 
et al. [19,20] and Stewart et al. [21]. To avoid the asymmetric stress tensor induced by the magnetic torque, Dadgar-Rad and Hossain 
[22] presented a model based on the micropolar continuum theory for the HMS materials. Different from the aforementioned 
continuum-based macroscopic model, some HMS mechanics models have been developed based on the microstructural approach 
[23–25] or the lattice model [26]. In addition, Mukherjee et al. [27,28] presented a thermodynamically consistent modeling frame-
work for most isotropic magnetorheological elastomers (both soft-magnetic and hard-magnetic soft materials). In their work [27,29], 
the magnetic Helmholtz free energy presented by Zhao et al. [18], which is assumed to be modulated by the deformation gradient, was 
demonstrated to be not sufficiently accurate for large strains. The magnetic Helmholtz free energy should be stretch-independent and 
vary only with rotation. In our previous work [30], we modified the magnetic Helmholtz free energy by replacing the deformation 
gradient with an affine rotation in the formula to address the issue. Although, these continuum-based models can accurately predict the 
deformation of the HMS materials, the simulations of the complex HMS structures were still time-consuming. 

For HMS robotics, an efficient computational model is desirable. Therefore, a series of mechanics models of the HMS rods, which 
are common structures in HMS robotics, have been developed. Wang et al. [31] and Arockiarajan et al. [32] focused on the 
one-dimensional bending deformation of the HMS beam, and the obtained results agreed well with previous experimental data. Chen 
et al. [33–35] theoretically investigated the 2D deformation of the non-uniformly magnetized HMS beam under constant magnetic 
field. In addition, Dadgar-Rad and Hossain [36] discussed the viscoelastic effect on the HMS beam. The buckling problem of the HMS 
cantilevers was investigated by Dehrouyeh-Semnani [37]. Very recently, some three-dimensional HMS rod models were developed. 
Based on the principle of minimum potential energy, Wang et al. [38] studied the 3D deformation of non-uniformly magnetized HMS 
rods in detail. Sano et al. [39] developed a 3D Kirchhoff HMS rod model, in which the spatially varying magnetic fields have been 
regraded. In the two works, the Euler angles were utilized to describe the 3D finite rotations in implementations. Dadgar-Rad et al. [40] 
presented a three-dimensional micropolar beam model to analyze the finite deformation of the HMS rod. Li et al. [30] investigated the 
effect of the cross-section deformation and hyperelasticity on the HMS rod. It should be mentioned that all the aforementioned works 
are limited to the static deformation of the HMS rod. The studies on the dynamic response of the HMS rod are rare, especially the 3D 
dynamic response. Chen et al. [41] presented a 2D dynamical curved beam model and investigated its vibration in detail. 
Dehrouyeh-Semnani [42] studied the magneto-hydro-elastic responses of a 2D fluid-conveying cantilevered hard magnetic soft pipe. 
Huang et al. [43,44] presented a 3D discrete dynamical model for the HMS slender structures and applied it to the simulation of the 
cilia carpet robots. In the present work, we analyze the 3D deformation of the HMS rod based on the geometrically exact rod theory in 
which only the rigid cross-section assumption is required. Compared to the aforementioned models, the present model does not ignore 
the shear deformation of the rod. It means that the present model will be more accurate in the case where the rod subjected to the load 
besides magnetic moment, such as gravity, especially for thick rod. In addition, the effect of “initial curvature” on the stress distri-
bution of the cross-section was not considered in the three other models. In fact, due to the “initial curvature”, the initial length of the 
longitudinal fiber is not constant. As a result, there exist the “tension-bending” coupling and “shear-torsion” coupling effects on the 
curved rod. Ignoring these effects is appropriate for “small-curvature” rods, however, it will make the model inaccurate when the 
“initial curvature” is significant [45]. Therefore, we investigate a 3D dynamical arbitrarily curved rod model in which the “ten-
sion-bending” coupling and “shear-torsion” coupling effects are considered based on the geometrically exact theory. 

The curved rod model can be traced back to the work by Reissner and Simo [46–48], in which only the assumption of rigid 
cross-sections was applied. This model commonly is referred to as the “Simo-Reissner theory” or “geometrically exact rod model”. If 
the shear effect is further ignored, the “Bernoulli–Euler theory” will be recovered, which is also usually called “Kirchhoff–Love theory”. 
A series of numerical implementations [48–53] of the geometrically exact curved rod models and the Kirchhoff curved thin model have 
been developed recently. However, the “tension-bending” coupling and “shear-torsion” coupling effects have not been incorporated in 
the aforementioned models. The truly geometrically exact curved/twisted rods were discussed by Reissner [54] and Kapania et al. 
[55]. In their work, a general framework to obtain the constitutive relations of the curved rod was presented. However, the explicit 
relation between the elasticity constants and the classical cross-section characteristics, such as “moment of inertia”, was not obtained. 
To address this issue, Borkovi et al. [45,56–60] developed the concise and explicit constitutive relations of the Kirchhoff curved thin 
rods. However, only static deformation is considered in it. To the best of our knowledge, the dynamic analysis of the geometrically 
exact curved rod with the “initial curvature” and “initial shear” effects taken into account has not been studied in detail in the 
literature. As we know, understanding the dynamic responses of the HMS rod, such as nonlinear vibrations, is important for the 
application of the HMS rod (e.g., locomotion control of the HMS robotics). For most HMS robotics, the straight HMS rods are not 
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enough to meet requirements. Therefore, it is necessary to develop a 3D arbitrarily curved rod dynamical theory for HMS robotics. 
The article is organized as follows. First, in Section 2, we formulate the constitutive relations and the governing equations of the 

curved HMS rods. And then, the temporal and spatial discretization of the problem are presented in Section 3, to obtain the finite 
element formulation of the problem. In Section 4, three numerical examples, including the dynamic snap-through behavior of a 
bistable arch [61], are presented and compared with the results reported in the literature to validate our model. In Section 5, some 
experiments about the dynamic motion of a quarter arc HMS robotic arm, including the 3D dynamic motion, are presented, and the 
experiment results show good agreement with the simulation results. Finally, we summarize our work and discuss the limitations of our 
model in Section 6. 

2. Formulation 

This section first focuses on the geometric description and the constitutive relations of the curved HMS rods and then presents the 
governing equations for the dynamic analysis. 

2.1. Geometric description 

In the beginning, we introduce a Cartesian coordinate system defined by the orthonormal basis {ei} and the origin O as the fixed 
coordinate system. A typical curved rod shown in Fig. 1 can be considered as a non-denumerable set of cross-sections whose geometry 
centroids are connected by a curve referred to as the line of centroids. Every cross-section is marked by the curvilinear coordinate along 
the line of centroids on the undeformed configuration S ∈ [0, L], where L is the total arc length of the undeformed rod. The Einstein 
summation convention is applied in this work for the dummy indices i = 1, 2, 3 and η = 1, 2. With the rigid cross-section assumption, 
the position vectors of the material point in the undeformed configuration x0 and the deformed configuration x can be, respectively, 
expressed by 

x0(S, ξ1, ξ2) = r0(S) + ξηEη(S) = r0(S) + ξηΛ0(S)eη,

x(S, τ, ξ1, ξ2)= r(S, τ) + ξηtη(S, τ) = r(S, τ) + ξηΛ(S)eη,
(1)  

where r0 and r are the position vectors of the centroids in the undeformed and deformed configurations; ξ1 and ξ2 are the components 
of the principal axis directions of the distance between the material point and the centroid; τ is the time coordinate; Eη and tη are the 
unit vectors parallel to the centroid principal axis direction in the undeformed and deformed configurations. Thus, we can define two 
orthonormal frames {Ei} and {ti} referred to as “material frame”, where E3 = E1 × E2 and t3 = t1 × t2. Λ0 and Λ are the orthogonal 
transformations between the material frames and the fixed frames, and can be expressed as 

Fig. 1. Schematic of motion from the undeformed rod configuration to the deformed rod configuration. Three orthonormal frames are fixed frame 
{ei}, material frame in the undeformed configuration {Ei} and material frame in the deformed configuration {ti}. 
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Λ0 = Ei ⊗ ei ⇒ Ei = Λ0ei,

Λ = ti ⊗ ei ⇒ ti = Λei.
(2) 

Therefore, the deformation of the rod can be described by the rigid motion of the family of cross-sections as 

r(S, τ) = r0(S) + u(S, τ),
Λ(S, τ)=Λr(S, τ)Λ0(S),

(3)  

where u is the displacement of the centroids, and Λr is the rotational matrix of the cross-sections. In particular, it can be expressed as 

Λr = ti ⊗ Ei ⇒ ti = ΛrEi. (4) 

To further study the deformation of the curved rod, we formally introduce a virtual configuration referred to as “reference 
configuration”, which is a straight rod with a length of L along the e3 direction, and the position vectors of the material points in the 
reference configuration X can be expressed as 

X(S, ξ1, ξ2) = Se3 + ξηeη. (5) 

The study of the deformation gradients is the key point to determine the constitutive relations of the curved rod. The deformation 
gradients of the undeformed configuration F0 and the deformed configuration F relative to the reference configuration can be given by 

F0 =
∂x0

∂S
⊗ e3 +

∂x0

∂ξη
⊗ eη =

∂r0

∂S
⊗ e3 + ξη

∂Eη

∂S
⊗ e3 + Eη ⊗ eη,

F =
∂x
∂S

⊗ e3 +
∂x
∂ξη

⊗ eη =
∂r
∂S

⊗ e3 + ξη
∂tη

∂S
⊗ e3 + tη ⊗ eη.

(6) 

The derivatives of the position vector can be expressed as 

∂r0

∂S
= Γ01E1 + Γ02E2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(
Γ2

01 + Γ2
02
)√

E3 ≈ Γ01E1 + Γ02E2 + E3,

∂r
∂S

= Γ1t1 + Γ2t2 + (Γ3 + 1)t3,

(7)  

where Γ01 and Γ02 are the “initial shear”, Γ1 and Γ2 are the “total shear”, and Γ3 is the “total tension”. The expression indicates the 

“initial tension” Γ03 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(
Γ2

01 + Γ2
02
)√

− 1 ≈ 0, which is due to the length of the reference configuration is equal to the undeformed 
configuration. The derivative of the material frames can be defined as 

∂Ei

∂S
= ω0 × Ei = (ω01E1 + ω02E2 + ω03E3) × Ei, ω∧

0 =
∂Λ0

∂S
ΛT

0 ,

∂ti

∂S
= ω × ti = (ω1t1 + ω2t2 + ω3t3) × ti, ω∧ =

∂Λ
∂S

ΛT ,

(8)  

where ω0 is the “initial curvature”, and ω0i are the components of the initial curvature; ω is the “total curvature”, and ωi are the 
components of the total curvature; (•)∧ represents the corresponding skew-symmetric tensor of the vector (•). Substituting Eqs. (7) and 
(8) into Eq. (6), the deformation gradients can be expressed as 

F0 =

⎡

⎢
⎢
⎣

1 0 Γ01 − ω03ξ2

0 1 Γ02 + ω03ξ1

0 0 1 + ω01ξ2 − ω02ξ1

⎤

⎥
⎥
⎦

Ei⊗ej

and F =

⎡

⎢
⎢
⎣

1 0 Γ1 − ω3ξ2

0 1 Γ2 + ω3ξ1

0 0 Γ3 + 1 + ω1ξ2 − ω2ξ1

⎤

⎥
⎥
⎦

ti⊗ej

. (9) 

We can define the “initial length” λ0 = 1 + ω01ξ2 − ω02ξ1, and the deformation gradient of the deformed configuration relative to the 
undeformed configuration Fe can be obtained by 

Fe = FF− 1
0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
(Γ1 − Γ01) − (ω3 − ω03)ξ2

λ0

0 1
(Γ2 − Γ02) + (ω3 − ω03)ξ1

λ0

0 0
Γ3 + 1 + ω1ξ2 − ω2ξ1

λ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ti⊗Ej

. (10) 

The “effective deformation gradient” Fe can also be expressed as 

Fe =

⎡

⎣
1 0 ε31
0 1 ε32
0 0 ε33 + 1

⎤

⎦

ti⊗Ej

, (11) 
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where ε31 = [(Γ1 − Γ01) − (ω3 − ω03)ξ2] /λ0, ε32 = [(Γ2 − Γ02) + (ω3 − ω03)ξ1] /λ0, and ε33 = (Γ3 +1+ω1ξ2 − ω2ξ1) /λ0 − 1 are the 
infinitesimal strains. 

2.2. Constitutive equations 

In this subsection, we derive the expression of the resultant force and moment for the isotropic and homogeneous curved rods. The 
Green strain tensor of the material in the rod C= 1

2
(
FT

e Fe − I
)

can be represented as 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0
ε31

2

0 0
ε32

2
ε31

2
ε32

2
ε33 +

1
2
(
ε2

31 + ε2
32 + ε2

33
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Ei⊗Ej

≈

⎡

⎢
⎢
⎢
⎢
⎣

0 0
ε31

2

0 0
ε32

2
ε31

2
ε32

2
ε33

⎤

⎥
⎥
⎥
⎥
⎦

Ei⊗Ej

. (12) 

It should be noted that the Green strain tensor is only exact when Poisson’s ratio ν = 0, because the rigid cross-section assumption 
exactly holds under the condition ν = 0. For more general situations, the expression of the Green strain tensor should be modified to 
hold the zero normal stresses between longitudinal fibers of rods, and the modified Green strain tensor can be given by 

C =

⎡

⎢
⎢
⎢
⎢
⎣

− vε33 0
ε31

2

0 − vε33
ε32

2
ε31

2
ε32

2
ε33

⎤

⎥
⎥
⎥
⎥
⎦

Ei⊗Ej

. (13) 

For linear elastic materials, the second Piola-Kirchhoff stress T follows the relations: 

Tij = DijklCkl, Dijkl = 2μ
(

δikδjl +
v

1 − 2v
δijδkl

)
, (14)  

where Dijkl is the elastic coefficients, μ is the shear modulus, and δij is the Kronecker delta. The second Piola-Kirchhoff stress can be 
written in a tensor form: 

T=

⎡

⎣
0 0 με31
0 0 με32

με31 με32 Eε33

⎤

⎦

Ei⊗Ej

, (15)  

where E is Young’s modulus. It should be noted that the large deformation of the most HMS rods is generally achieved through the large 
rotation, rather than large strain. The strain in rods is usually small, therefore the linear elastic model is adopted for the HMS rods in 
this work. Considering a cross-section in the undeformed configurationA, the resultant force and moment over the cross-section n and 
m can be given by [47,55] 

n =

∫ ∫

A

FeTE3dξ1dξ2 =

∫ ∫

A

⎡

⎢
⎢
⎢
⎣

με31 + Eε31ε33

με32 + Eε32ε33

Eε33 + Eε2
33

⎤

⎥
⎥
⎥
⎦

ti

dξ1dξ2 ≈

∫ ∫

A

⎡

⎢
⎣

με31

με32

Eε33

⎤

⎥
⎦

ti

dξ1dξ2,

m =

∫ ∫

A

(x − r) × FeTE3dξ1dξ2 ≈

∫ ∫

A

⎡

⎢
⎣

ξ1

ξ2

0

⎤

⎥
⎦

ti

×

⎡

⎢
⎣

με31

με32

Eε33

⎤

⎥
⎦

ti

dξ1dξ2.

(16) 

To obtain the relations between deformation and the resultant force and moment, it is essential to apply the Taylor expansion to the 
infinitesimal strains ε31, ε32, and ε33: 

ε31 = [(Γ1 − Γ01) − (ω3 − ω03)ξ2](1 − ω01ξ2 + ω02ξ1) + o
(
ε2),

ε32 = [(Γ2 − Γ02) + (ω3 − ω03)ξ1](1 − ω01ξ2 + ω02ξ1) + o
(
ε2),

ε33 = [Γ3 + (ω1 − ω01)ξ2 − (ω2 − ω02)ξ1](1 − ω01ξ2 + ω02ξ1) + o
(
ε2),

(17)  

where ε ~ Γ ~ ωξ are the infinitesimal quantities. We define the “effective shear” Γeη = Γη − Γ0η, “effective tension” Γe3 = Γ3, and 
“effective curvature” ωei = ωi − ω0i. Substituting Eq. (17) into Eq. (16) leads to 
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n =

⎡

⎢
⎢
⎣

Γe1μA1 + ωe3ω01μI1

Γe2μA2 + ωe3ω02μI2

Γe3EAs − ωe1ω01EI1 − ωe2ω02EI2

⎤

⎥
⎥
⎦

ti

,

m =

⎡

⎢
⎢
⎣

ωe1EI1 − ω01Γe3EI1 − ωe1(ω01EI11 − ω02EI12) + ωe2(ω01EI12 − ω02EI21)

ωe2EI2 − ω02Γe3EI2 + ωe2(ω02EI22 − ω01EI21) + ωe1(ω01EI12 − ω02EI21)

ωe3μJ + Γe1ω01μI1 + Γe2ω02μI2 + ωe3(ω02μI22 + ω02μI12 − ω01μI21 − ω01μI11)

⎤

⎥
⎥
⎦

ti

,

(18)  

where Aη = kηAs is the equivalent shear area, and kη is the reasonable factor [62]; As is the area of the cross-section; I1 =
∫ ∫

Aξ2
2dξ1dξ2 

and I2 =
∫ ∫

Aξ2
1dξ1dξ2are the moments of inertia of the cross-section; J = I1 + I2 is the polar moment of inertia of the cross-section; I11 

=
∫ ∫

Aξ3
2dξ1dξ2, I12 =

∫ ∫
Aξ1ξ2

2dξ1dξ2, I21 =
∫ ∫

Aξ2
1ξ2dξ1dξ2and I22 =

∫ ∫
Aξ3

1dξ1dξ2 are the high order moments of inertia of the 
cross-section. For standard symmetric solid cross-section shapes, the high-order moments of inertia of the cross-section I11 = I12 = I21 =

I22 = 0, the resultant force n and the moment m can be expressed as 

n =

⎡

⎢
⎢
⎣

Γe1μA1 + ωe3ω01μI1

Γe2μA2 + ωe3ω02μI2

Γe3EAs − ωe1ω01EI1 − ωe2ω02EI2

⎤

⎥
⎥
⎦

ti

,

m =

⎡

⎢
⎢
⎣

ωe1EI1 − ω01Γe3EI1

ωe2EI2 − ω02Γe3EI2

ωe3μJ + Γe1ω01μI1 + Γe2ω02μI2

⎤

⎥
⎥
⎦

ti

.

(19) 

Eq. (19) indicates the two coupling effects: (1) “tension-bending” coupling effects: the coupling of the tension deformation Γe3 and 
the bending deformation ωeη determines the tension resultant forces and bending moment; (2) “shear-torsion” coupling effects: the 
coupling of the shear deformation Γeη and the torsional deformation ωe3 determines the shear resultant forces and torsion moment. The 
material resultant force and moment N and M, material effective strain measures Γe and ωe can be defined as 

N = ΛT
r n, M =ΛT

r m,

Γe = Γe1E1 + Γe2E2 + Γe3E3,

ωe = ωe1E1 + ωe2E2 + ωe3E3,

(20)  

where the material effective strain measures have other expressions as Γe = ΛT
r

∂r
∂S −

∂r0
∂S and ω∧

e = ΛT
r

∂Λr
∂S . Finally, the material elasticity 

tensor can be obtained as 

D=

⎡

⎢
⎢
⎢
⎣

∂N
∂Γe

∂N
∂ωe

∂M
∂Γe

∂M
∂ωe

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

μA1 0 0 0 0 ω01μI1
0 μA2 0 0 0 ω02μI2
0 0 EAs − ω01EI1 − ω02EI2 0
0 0 − ω01EI1 EI1 0 0
0 0 − ω02EI2 0 EI2 0

ω01μI1 ω02μI2 0 0 0 μJ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ei⊗Ej

. (21) 

Hereto the constitutive equations with the centroids as the reference points are completed. However, for dynamic analysis, the 
relative coordinates of the mass of centers ξc

1 and ξc
2 are important, and can be obtained by 

ξc
1 =

∫ ∫
Aρξ1λ0dξ1dξ2∫ ∫

Aρλ0dξ1dξ2
= −

ω02I2

As
,

ξc
2 =

∫ ∫
Aρξ2λ0dξ1dξ2∫ ∫

Aρλ0dξ1dξ2
=

ω01I1

As
,

(22)  

where ρ is the mass density. The spatial relative vector ξc = ξc
1t1 + ξc

2t2 and material relative vector ξc
0 = ξc

1E1 + ξc
2E2 can be defined. 

2.3. Reduced balance equations 

In this subsection, the reduced balance equations of the HMS curved rods are summarized. Prior to introducing the linear and 
angular momentum of the curved rods, the time derivatives of the moving frame should be defined, and it can be given by 

∂ti

∂τ = w × ti = (w1t1 + w2t2 + w3t3) × ti, w∧ =
∂Λr

∂τ ΛT
r , (23)  

where wis the angular velocity of the cross-sections. For convenience, we denote material time derivative by a superposed “dot”. 
Considering an arbitrary cross-section, the linear momentum per unit of reference arc length Lt can be defined by 
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Lt =

∫ ∫

A

ρλ0ẋdξ1dξ2 = ρAs(ṙ+w× ξc). (24) 

Similarly, the angular momentum per unit of reference arc length Ht referred to the centroids can be given by 

Ht =

∫ ∫

A

ρλ0(x − r) × (ẋ − ṙ)dξ1dξ2

=

∫ ∫

A

ρλ0(x − r) × [w × (x − r)]dξ1dξ2

=

∫ ∫

A

ρλ0
[
‖ x − r ‖21− (x − r) ⊗ (x − r)

]
dξ1dξ2w =Iρw,

(25)  

where Iρ is the inertia tensor referred to as the centroids, and for the standard symmetric solid cross-section shapes, it can be expressed 
as 

Iρ =

⎡

⎣
ρI1 0 0
0 ρI2 0
0 0 ρJ

⎤

⎦

ti⊗tj

. (26) 

The reduced balance equations of the curved rod are, see e.g., Simo [47] or Kapania [55], 

∂n
∂S

+n =L̇t = ρAs[r̈ + ẇ × ξc + w × (w × ξc
)],

∂m
∂S

+
∂r
∂S

× n + m = Ḣt + ρAsξc × r̈ = Iρẇ + w × Iρw + ρAsξc × r̈,
(27)  

where n and m is the “applied” distributed load. In application, it is convenient to utilize the material form of the equations. Thus, we 
can define the material vector fields: 

W = ΛT
r w =w1E1 + w2E2 + w3E3,

N = ΛT
r n, M =ΛT

r m,

Jρ = ΛT
r IρΛr ==

⎡

⎢
⎣

ρI1 0 0
0 ρI2 0
0 0 ρJ

⎤

⎥
⎦

Ei⊗Ej

.

(28) 

For HMS curved rods, such as hard-magnetic soft robotics, the applied load can be divided into three parts: gravity loads ng and mg, 
magnetic driving forces nm and mm, and other applied loads no and mo. To simplify the discussion, the loads nm and mm are assumed to 
be invariant under the deformation of the HMS curved rod. Therefore, we focus our attention on the first two kinds of loads. The gravity 
loads can be expressed as 

ng =

∫ ∫

A

ρλ0gdξ1dξ2 = ρAsg,

mg =

∫ ∫

A

ρλ0(x − r) × gdξ1dξ2 = ρAsξc × g,
(29)  

where g is the gravitational acceleration. For straight rods, the geometry centroids and the centers of mass coincide, which means the 
moment mg caused by gravity is zero. 

In this work, the HMS materials are assumed to be ideal HMS materials, and their magnetic free energy density under gradient- 
invariant applied magnetic field can be expressed as [30] 

ρm = −
1

μm
Ba ⋅ ΛrBr

= −
1

μm
[B0 + (∇B0)(x − r)] ⋅ ΛrBr,

(30)  

where ρm is the magnetic free energy density, μm is the vacuum permeability, Ba is the applied magnetic flux density, Br is the residual 
magnetic flux density in the undeformed configuration, B0 is the applied magnetic flux density in the centroids, and ∇B0 is the gradient 
of the applied magnetic flux density. For ideal HMS materials, we assume the Ba and Br are known and unaltered, as a simplification. 
The distribution of the magnetic fields will be affected by the magnetic dipole moments of the hard-magnetic particles and the fringing 
effects on the HMS materials. The magnetic free energy per unit of the reference arc length Um can be given by 
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Um =

∫ ∫

A

λ0ρmdξ1dξ2

= −
As

μm
[B0 + (∇B0)ξc

] ⋅ ΛrBr

(31) 

To obtain the magnetic driving forces, we consider an arbitrary configuration of the rods Φ̃= {r̃, Λ̃r} and an infinitesimal 
perturbation δΦ ={δr, δθ}. It is obvious that we can express the perturbated configuration Φ= {r,Λr} as 

r = r̃+δr,
Λr = exp(δθ∧)Λ̃r = Λ̃r + δθ∧Λ̃r.

(32) 

In this work, a variable with a tilde or a bar above it represents the variable in the configuration Φ̃ or Φ, respectively. The variation 
of the magnetic free energy per unit of the reference arc length δUm can be given by 

δUm = Um − Ũm = −
(
δrTñm + δθTm̃m

)

= −
As

μm

[
δrT δθT ]

[
(∇B̃0)

TΛ̃rB̃r

Λ̃rB̃r × (B̃0 +∇B̃0ξ̃
c
) + ξ̃

c
× (∇B̃0)

TΛ̃rB̃r

]

.
(33) 

Therefore, the magnetic driving forces nm and mmcan be expressed as 

nm =
As

μm
(∇B0)

TΛrBr,

mm =
As

μm

[
ΛrBr × (B0 +∇B0ξc) + ξc × (∇B0)

TΛrBr
]
≈

As

μm
ΛrBr × B0.

(34) 

Because the condition ‖B0‖ ≫ ‖∇B0ξc‖ is appropriate for most hard-magnetic soft robotics, the second and third terms of the 
moment caused by magnetic fields are ignored. 

Here, we may summarize the governing equations of hard-magnetic soft robotics as follows: 

∂n
∂S

+ng+nm + no=ρAs[r̈ + ẇ × ξc + w × (w × ξc)],

∂m
∂S

+
∂r
∂S

× n+mg + mm + mo = Iρẇ + w × Iρw + ρAsξc × r̈,

ng = ρAsg, mg = ρAsξc × g,

nm =
As

μm
(∇B0)

TΛrBr, mm ≈
As

μm
ΛrBr × B0.

(35)  

3. Finite element formulation 

In this section, we start by presenting the weak form of the problem, followed by the temporal discretization and the linearization of 
the weak form. In the end, we complete the finite element formulation of the problem by spatial discretization using Lagrange 
interpolation polynomials. 

3.1. Weak form of the reduced balanced equations 

For simplicity, the boundary conditions are assumed to be Dirichlet type, and the weak form of the reduced balanced equations of 
the HMS curved rod can be given by 

G(Φ, δΦ) = −

∫ L

0

[

δrT∂n
∂S

+ δθT
(

∂m
∂S

+
∂r
∂S

× n
)]

dS

−

∫ L

0

[
δrT ( ng+nm + no

)
+ δθT (mg + mm + mo

)]
dS

+

∫ L

0

{
δrTρAs[r̈ + ẇ × ξc + w × (w × ξc

)]+δθT
(Iρẇ + w × Iρw + ρAsξc × r̈)

}
dS = 0.

(36) 

The weak form can be divided into three parts: the part caused by resultant force and moment Gr, the part caused by the applied 
distributed load Ga, and the part caused by the dynamical part Gd. Their expressions are 
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Gr = −

∫ L

0

[

δrT∂n
∂S

+ δθT
(

∂m
∂S

+
∂r
∂S

× n
)]

dS,

Ga = −

∫ L

0

[
δrT ( ng+nm + no

)
+ δθT (mg + mm + mo

)]
dS,

Gd =

∫ L

0

{
δrTρAs[r̈ + ẇ × ξc + w × (w × ξc)]+δθT(Iρẇ + w × Iρw + ρAsξc × r̈)

}
dS.

(37) 

For Dirichlet boundary conditions, the condition δr(0) = δr(L) = δθ(0) = δθ(L) = 0 holds, and integration-by-part of Gr leads to 

Gr =

∫ L

0

{[
∂(δr)

∂S
− δθ ×

∂r
∂S

]T

n+
∂(δθ)T

∂S
m

}

dS. (38) 

It is sometimes convenient to consider the material description of the weak form. The Gr in the material description can be 
expressed as 

Gr =

∫ L

0

{[
∂(δr)

∂S
− δθ ×

∂r
∂S

]T

ΛrN+
∂(δθ)T

∂S
ΛrM

}

dS. (39) 

The Gd in the material description can be expressed as 

Gd =

∫ L

0

[
δrTρAs r̈ + δθT

(ρAsξc × r̈)
]
dS

+

∫ L

0

{
δrTρAsΛr

[
Ẇ × ξc

0 + W ×
(
W × ξc

0

)]
+δθTΛr(JρẆ + W × JρW)

}
dS,

(40)  

where Ẇ = ΛT
r ẇ is the angular acceleration in the material description. 

3.2. Temporal discretization 

Let [τn, τn+1]⊂[0,T] denotes a typical time sub-interval, and we employ the subscript n to denote the approximation of the quantity at 
the time instance τn. The state of the rod at the time τn can be described by its configuration Φn = {rn,Λr(n)}, its linear and angular 
velocities {ṙn,wn}, and its linear and angular acceleration {r̈n,ẇn}. The displacement field of the rod from τn to τn + 1 can be defined as 
{un,θn}, and the relation between Φn and Φn + 1 can be given by 

rn+1 = rn + un,

Λr(n+1) = exp
(
θ∧

n
)
Λr(n) = Λr(n)exp

(
Θ∧

n
)
,

(41)  

where Θn = ΛT
r(n)θn is the rotation displacement in the material description. We adopt the Newmark method for numerical time 

integration. The updated quantity of translational motion can be given by 

un = hṙn + h2
[(

1
2
− β
)

r̈n + βr̈n+1

]

,

ṙn+1 = ṙn + h[(1 − γ)r̈n + γr̈n+1],

(42)  

where h = τn + 1 − τn is the time step size, β ∈

[

0, 1
2

]

and γ ∈ [0, 1] are the parameters for the Newmark scheme. The updated quantity in 

the material description of rotational motion can be given by 

Θn = hWn + h2
[(

1
2
− β
)

Ẇn + βẆn+1

]

,

Wn+1 = Wn + h[(1 − γ)Ẇn + γẆn+1].

(43) 

For nonlinear dynamic analysis, the consistent Newton-Raphson method is adopted. The quantity (•) in the ith iteration at the time 

τn + 1 is denoted by ( • )(i)n+1. For i = 0, the initial quantity can be set as 
{

u(0)
n ,Θ(0)

n+1

}
= {0,0}, and the other quantities are updated 

according to Eqs. (41), (42) and (43). Considering the ith (i ∕= 0) iteration, the iterative displacement increment field ΔΦ(i)
n+1 =

{
Δr(i)n+1,

Δϑ(i)
n+1

}
can be obtained by solving the linearization of the weak form. The updated quantity of the translational motion in the i + 1-th 

iteration can be given by 
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r(i+1)
n+1 = r(i)n+1 + Δr(i)n+1,

ṙ(i+1)
n+1 = ṙ(i)n+1 +

γ
βh

Δr(i)n+1,

r̈(i+1)
n+1 = r̈(i)n+1 +

1
βh2 Δr(i)n+1.

(44) 

The updated quantity of the rotational motion in the i + 1-th iteration can be given by 

Λ(i+1)
r(n+1) = exp

[
Δϑ(i)∧

n+1

]
Λ(i)

r(n+1),

θ(i+1)∧
n = ln

{
exp
[
Δϑ(i)∧

n+1

]
exp
[
θ(i)∧

n
]}

,

Θ(i+1)
n = ΛT

r(n)θ
(i+1)
n ,

W(i+1)
n+1 = W(i)

n+1 +
γ

βh
[
Θ(i+1)

n − Θ(i)
n
]
,

Ẇ(i+1)
n+1 = Ẇ(i)

n+1 +
1

βh2

[
Θ(i+1)

n − Θ(i)
n
]
.

(45) 

The detailed scheme to calculate the ln
{

exp
[
Δϑ(i)∧

n+1

]
exp
[
θ(i)∧

n
]}

can be found in Appendix B of [63]. 

3.3. Linearization of the weak form 

Considering the ith iteration at the time τn + 1, the iterative displacement increment field is denoted by ΔΦ(i)
n+1 =

{
Δr(i)n+1,Δϑ(i)

n+1

}
. 

From Eq. (44), the linear part of the change of the translational quantity
{

δr(i)n+1, δṙ(i)n+1, δr̈(i)n+1

}
can be given by 

δr(i)n+1 = Δr(i)n+1,

δṙ(i)n+1 =
γ

βh
Δr(i)n+1,

δr̈(i)n+1 =
1

βh2 Δr(i)n+1.

(46) 

For rotational quantity, the key step is to determine the linear part of the change of the rotational displacement field δθi
n, and it can 

be obtained by [63] 

δθi
n =

d
dε

⃒
⃒
⃒
⃒

ε=0
ln
{

exp
[
εΔϑ(i)∧

n+1

]
exp
[
θ(i)

n
]}∨

= Z
(
θ(i)

n
)
Δϑ(i)

n+1,

Z(θ) = e ⊗ e +
‖ θ ‖ /2

tan(‖ θ ‖ /2)
(1− e ⊗ e) −

θ∧

2
, where e = θ/‖ θ ‖.

(47) 

Therefore, according to Eqs. (45) and (47), the linear part of the change of other rotational quantity 
{

δΛ(i)
r(n+1), δW(i)

n+1, δẆ(i)
n+1

}
can be 

obtained by 

δΛ(i)
r(n+1) =

[
Δϑ(i)

n+1

]∧
Λ(i)

r(n+1),

δW(i)
n+1 =

γ
βh

ΛT
r(n)Z

(
θ(i)

n
)
Δϑ(i)

n+1,

δẆ(i)
n+1 =

1
βh2ΛT

r(n)Z
(
θ(i)

n

)
Δϑ(i)

n+1.

(48) 

Considering the linearization of the weak form in the ith iteration at the time τn + 1 about the configuration Φ(i)
n+1, and it can be 

defined as 

L
{

G
[
Φ(i)

n+1, δΦ
]}

= G
[
Φ(i)

n+1, δΦ
]
+ δGr + δGa + δGd = 0, (49)  

where G
[
Φ(i)

n+1, δΦ
]

is the out-of-balance dynamic force, δGr, δGa and δGd are the linear part of the change of the weak form. For 

convenience, we can define the test functions δΦ and the trial functions ΔΦ as the form as 

δΦ =

[
δr
δθ

]

, ΔΦ =

[
Δr
Δϑ

]

. (50) 

X. Li et al.                                                                                                                                                                                                               



Applied Mathematical Modelling 134 (2024) 71–96

81

Following the definition in Section 2.3, a variable with a tilde above it represents the variable in the current configuration Φ(i)
n+1, e. 

g., Λ(i)
r(n+1) = Λ̃r. 

The linear part caused by the resultant force and moment δGr in Eq. (49) can be given by 

δGr

[
Φ(i)

n+1, δΦ
]
=

∫ L

0

[(
Ξ̃

T
δΦ
)Td̃Ξ̃

T
+
(
Ψ̃

T
δΦ
)TỸΨ̃

T]
ΔΦ(i)

n+1dS, (51)  

where d is the spatial form of the material elasticity tensor and take the following form 

d = ΠDΠT , Π =

[
Λr 0

0 Λr

]

. (52) 

The matrix differential operators Ξ and Ψ are defined as 

ΞT =

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂S

1
(

∂r
∂S

)∧

0
∂

∂S
1

⎤

⎥
⎥
⎥
⎥
⎦
, Ψ =

⎡

⎢
⎢
⎢
⎣

∂
∂S

1 0 0

0
∂

∂S
1 1

⎤

⎥
⎥
⎥
⎦
, (53)  

and the geometric stiffness matrix Y has the form as 

Y=

⎡

⎣
0 0 − n∧

0 0 − m∧

n∧ 0 nrʹT −
(
nTrʹ)1

⎤

⎦, (54)  

where ŕ = ∂r
∂S. The detailed derivation can be found in Simo and Vu-Quoc [48] or our previous works [30,53]. 

The linear part caused by the applied distributed load δGa in Eq. (49) can be given by 

δGa

[
Φ(i)

n+1, δΦ
]
= −

∫ L

0
δΦT

(
q̃g + q̃m

)
ΔΦ(i)

n+1dS, (55)  

where qg and qm are the tangent load stiffness matrix corresponding to the gravity loads and magnetic driving forces and have the 
expressions as 

qg = ρAs

[
0 0

0 g∧ξc∧

]

, qm =
As

μm

⎡

⎣
0 − (∇B0)

T
(ΛrBr)

∧

(ΛrBr)
∧
∇B0 B∧

0 (ΛrBr)
∧

⎤

⎦. (56) 

The linear part caused by the dynamical part δGa in Eq. (49) can be given by 

δGd =

∫ L

0
δΦT(H̃1 + H̃2)ΔΦ(i)

n+1dS, (57)  

where H1 and H2 are the tangent dynamic stiffness matrices, and adopts the form 

H1=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρAs

βh2 1 0

0 Λr

[
Jρ

βh2 −
γ

βh
(JρW)

∧
+

γ
βh

W∧Jρ

]

ΛT
r(n)Z(θ) − [Λr(JρẆ+W∧JρW)]

∧

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

H2 = ρAs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 − Λr

[
ξc∧

0
βh2 +

γ
βh
(
W∧ξc

0
)∧

+
γ

βh
W∧ξc∧

0

]

ΛT
r(n)Z(θ) −

[
Λr
(
Ẇ∧ξc

0 + W∧W∧ξc
0
)]∧

ξc∧

βh2 r̈∧ξc∧

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(58) 

The matrix H1 is referred to as the classical tangent dynamic stiffness matrix [63] and is caused by the linear and angular mo-
mentum relative to the centroids. The non-conventional tangent dynamic stiffness matrix H2 represents the effect of the deviation of 
the center of mass from the geometric centroid on the dynamic. 

3.4. Spatial discretization 

Considering a classical spatial discretization, the approximations of the displacement increment field can be given by 
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Δr(i),hn+1 ≃
∑nn

I=1
NIΔr(i),hn+1,I, Δϑ(i),h

n+1 ≃
∑Nn

I=1
NIΔϑ(i),h

n+1,I, (59)  

where nn is the total number of the nodes; NI is the shape functions associating with the node I; Δr(i),hn+1,I and Δϑ(i),h
n+1,I are the approxi-

mations of the displacement increment field at the node I. In this work, the variable superscript h represents the spatial discrete 
approximation of the variable. Following the Galerkin finite element method, the test functions δΦ are approximated by the same 
manner as Eq. (59), and the spatially discrete version of the linearization of weak form can be given by 

L
(
Gh) =

∑nn

I=1

∑nn

J=1
δΦhT

I

(
PI +KIJΔΦ(i),h

n+1,J

)
= 0, (60)  

where KIJ are the stiffness submatrices coupling node I and J, and are represented as 

KIJ = RIJ+qIJ + HIJ. (61) 

The stiffness submatrices caused by the resultant force and moment RIJ can be given by 

RIJ =

∫ L

0

(
Ξ̃

h
I d̃

h
Ξ̃

hT
J + Ψ̃

h
I Ỹ

h
Ψ̃

hT
J

)
dS, (62)  

where the operators Ξ̃
h
I and Ψ̃

h
I are 

Ξ̃
h
I =

⎡

⎢
⎢
⎣

Nʹ
I1 0

− NI

(
∂rh

∂S

)∧

Nʹ
I1

⎤

⎥
⎥
⎦, Ψ̃

h
I =

⎡

⎣
Nʹ

I1 0 0

0 Nʹ
I1 NI1

⎤

⎦. (63) 

The ̃d
h 

and Ỹ
h 

are the spatial discrete approximation of ̃d and Ỹ. The stiffness submatrices caused by the applied distributed load qIJ 
have the form as 

qIJ = −

∫ L

0

(
q̃h

g + q̃h
m

)
NINJdS. (64) 

And the stiffness submatrices caused by the dynamical part HIJ can be given by 

HIJ =

∫ L

0

(
H̃

h
1 + H̃

h
2
)
NINJdS. (65) 

Fig. 2. Schematic of the semicircular cantilever subjected to end load: (a) undeformed shape of the semicircular cantilever. The radius of the 
semicircular cantilever is 100 mm, and the cross-section of the semicircular cantilever is a rectangle with a height of 100 mm and thickness of 70 
mm; (b) deformed shapes under end loads in different directions. 
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Finally, the out-of-balance force coupling node I, PI is 

PI =

∫ L
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(66)  

4. Model validation 

Three numerical examples are presented in this section and are compared with the 2D solid finite element simulation results and the 
results presented in the literature to further assess our model. The reduced integration is utilized to avoid the shear locking of the 
geometrically exact rod element [48], and the convergence criteria follow our previous work [53]. 

4.1. Example 1: semicircular cantilever subject to end load 

We start with a semicircular cantilever of radius R = 100mm with the rectangle cross-section of height h = 100mm and thickness b 
= 70mm, as shown in Fig. 2(a). A concentrated force in the e1-direction F is applied to the end of the cantilever, and the deformed 

Fig. 3. Components of the displacement, rotation angle, and their relative error of the semicircular cantilever subjected to end load versus applied 
load. The black lines denote the results obtained by plane strain (PE) element formulation, red lines denote the results obtained by present element 
formulation, and blue lines denote the results obtained by classical geometrically exact rod (C-GEB) element formulation: (a) horizontal 
displacement; (b) vertical displacement; (c) rotation angle; (d) relative error of horizontal displacement; (e) relative error of vertical displacement; 
(f) relative error of rotation angle. 
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shapes of the cantilever are depicted in Fig. 2(b). We denote the displacement of the end by u and the rotation angle of the end by θ. 
Young’s modulus of the rod is 1 MPa, and Poisson’s ratio is 0. The end concentrated force slowly varies from − 150 N to 150 N, which 
can be regarded as quasi-static. Furthermore, three element formulations are considered: the present rod element, the classical 
geometrically exact rod (C-GER) element, and the plane strain (PE) element. In finite element analysis, 12 two-node linear rod ele-
ments or 1521 four-node quadrilateral and 35 three-node tetrahedral PE elements are utilized to solve this problem. The components of 
the displacement of the end u1 and u2 obtained by the three methods can be found in Fig. 3(a) and (b), and the rotation angle θ can be 
found in the Fig. 3(c). We calculate the relative error of the displacement components and the rotation angle relative to the results 
obtained by PE finite element analysis, which is shown in Fig. 3(d–f). 

As shown in Fig. 3, the results obtained by the present rod model agree well with the results obtained by the PE finite element 
analysis, the relative error is within 10 %. However, there is a deviation between the results obtained by our model and the results 
obtained by PE finite element analysis, and it increase with the load. One possible explanation for the deviation could be the failure of 
the rigid cross-section assumption when subjected to significant loads. Compared to the C-GER model, the relative errors of the results 
obtained by our model are generally smaller, which means our model is more accurate in predicting the deformation of the curved rod. 
Considering that less elements are used in our formulation, we may conclude our model is efficient and accurate for predicting the 
deformation of curved rods. However, it must be mentioned that the differences between the results obtained from the present model 
and C-GER model are small even for such a large-curvature rod. This means that the influence of the tension-bending and shear-torsion 
coupling effects is negligible, especially for small- or medium-curvature rods. 

4.2. Example 2: large displacement vibration of the elbow cantilever 

In this numerical example, we consider an elbow cantilever with two legs, each of which has the length L = 10m, as shown in Fig. 4. 
The elbow cantilever is subjected to an out-of-plane force load F = Fe2 at its elbow, and the magnitude of the out-of-plane load F follows 
the pattern of a hat function, as shown in Fig. 4. The stiffness properties of the rod are EA = μA1 = μA2 = 106N and EI1 = EI2 = μJ =
103N ⋅ m2. In order to emphasize the influence of the rotational motion, the inertia constants of the rod are artificially chosen to be ρA 
= 1kg ⋅ m− 1 and ρI1 = ρI2 = 10kg ⋅ m. 

This example has been investigated by a series of studies [49,63] using the C-GER model. The cantilever undergoes a large 
displacement vibration of the same order as the length of the cantilever. We utilize our formulation to simulate the vibration process 
with two meshes: (1) two quadratic elements (2) and ten quadratic elements. In the calculation, we adopt the time step size as h = 0.25s 
and the trapezoidal rule (β = 0.25and γ = 0.5) to analyze the motion of the cantilever from τ = 0s to τ = 30s. The e2-direction 
displacement component u2 at the elbow and the end are shown in Fig. 5(a), and the deformed shapes of the cantilever are shown in 
Fig. 5(b). Our results show great agreement with the results reported in the literature [49,63], which proves the ability of our 
implementation to predict the dynamic response of the rod. It should be noted that the legs of the elbow cantilever are straight rods 
whose initial curvature is zero. Therefore, the present model and the C-GER model are identical in this case. 

4.3. Example 3: the dynamic snap-through behavior of a bistable arch 

This example was first analytically and experimentally investigated by Tan et al. [61], afterwards Stewart et al. [21] utilized a 
magneto-viscoelastic model to simulate it. The bistable arch is a straight rod of length L0 ≈ 120.5mm at the initial configuration, and it 
is compressed on both ends to form an arch with span L = 120mm and rise a ≈ 4mm, as shown in Fig. 6(a). The cross-sections of the 
arch are rectangles of width W = 20mm and thickness H = 2.5mm. The arch is made from a mixture of the polydimethylsiloxane 

Fig. 4. Schematic of the elbow cantilever subjected to out-of-plane force load and the time signal of the force load. The length of each leg of the 
elbow cantilever is 10 m, and the elbow cantilever is subjected to an e2-direction concentration force. 
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(PDMS) matrix and NdFeB particles with an equal mass fraction, with the residual magnetic flux density Br = Bre3 parallel to the axial 
direction as shown in Fig. 6(a). It should be noted that the residual magnetic flux density is discontinuous at the midpoint. When the 
arch is subjected to a large enough applied magnetic flux density Ba = Bae1 in the e1-direction, a rapid dynamic transition or 
“snap-through” between two buckled configurations will be triggered, as shown in Fig. 6(a), and the minimum applied magnetic flux 
density which can trigger the snap-through is called as the “critical applied magnetic flux density” Bcr

a = Bcr
a e1. 

Tan et al. [61] adopted the applied magnetic flux density on the arch by three different loading modes: (1) DC pulse magnetic field, 
(2) constant magnetic field, and (3) triangle magnetic field, and they reported the displacement data of the midpoint of the arch. In this 
subsection, our model is used to simulate the dynamic response of the arch to the three kinds of loads, and the results obtained by our 
model are compared with the experiment data reported by Tan et al. [61] to assess our model. The experiment data can be found in the 

Fig. 5. Large displacement vibration of the elbow cantilever subjected to out-of-plane force load: (a) the out-of-plane displacement at the elbow and 
the end versus time with two meshes. (b) deformed shapes. 
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Data Availability section in [21]. 
Young’s modulus of the arch is 4.2 MPa, Poisson’s ratio is 0.3, and the magnitude of the residual magnetic flux density Br = 72.3mT, 

which are obtained from [61]. It should be noted that the residual magnetic flux density is not given directly in [61], and can be 
calculated by Eq. (24) of [61]. The density of the arch is estimated as 1733.5 Kg/m3 according to the components of the material. The 
aforementioned material parameters obtained by test experiments are referred to as “initial parameters”. To achieve the accurate 
prediction of the dynamic snap-through behavior, we slightly adjust the initial parameters to fit the experimental data of the arch 
under the DC pulse magnetic field, and the new group of material parameters are referred to as “modified parameters” (detailed 
description is in Section 4.3.1). To demonstrate the ability of our model to predict the dynamic snap-through behaviors, we use the two 
groups of material parameters to simulate the dynamic snap-through behaviors of a bistable arch under two other kinds of magnetic 
fields (constant and triangle magnetic field), and the simulation results are compared with the experiment results. 

In the beginning, we simulate the compression process of the straight rod of the initial length L0 = 120.486mm to obtain the 
buckled configuration depicted in Fig. 6(a). In the simulation process, we choose to with the time step size of 100000s so that the 
inertial effect is negligible, and the process can be regarded as quasi-static. We integrated the problem with 100 time steps. Eleven 
quadratic elements are used in this example. To make sure we obtain the desired buckled configuration, a very small force of 0.0001 N 
in e1-direction is applied at the midpoint of the arch in the first 90 steps. The relation between the rise a and the span L of the arch can 
be found in Fig. 6(b). The buckling occurs after L = 120.35mm. 

For dynamic analysis of the arch, the environmental damping and viscoelasticity play a role. We apply a linear translational 
damping constraint with the same linear coefficient Cdamp at every node to capture the effects, and the load fdamp and additional 
stiffness Kdamp resulted from the damping constraint can be given by 

Fig. 6. The bistable hard-magnetic soft arch: (a) the snap-through behavior of the bistable arch. The arch is a straight rod with an initial length of 
about 120.5 mm in the initial configuration, and the cross-sections of the arch are rectangles of width 20 mm and thickness 2.5 mm. The residual 
magnetic flux density of the arch is parallel to the e3-direction is shown. The straight rod is compressed on both ends to form an arch with a rise of 
about 4 mm and a span of 120 mm. When a large enough applied magnetic flux density in e1-direction is applied on the arch, the arch will rapidly 
transit into another buckled configuration, called as “snap-through”; (b) the rise of the arch versus the span of the arch; (c) the time signal of the 
displacement of the midpoint of the arch in the e1-direction obtained by Tan et al. [61] and simulation. The first peak of the time signal obtained by 
simulation D0 is 206 μm. 
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fdamp = Cdampṙdamp,

Kdamp =
γCdamp

βh
I,

(67)  

where ṙdamp is the velocity of the point at which the damping constraint is applied. It should be noted that the method to capture the 
viscous effect is an engineering simplification. 

Tan et al. [61] gave the time signal of the displacement of the midpoint of the arch in the e1-direction um1 after a small perturbation, 
given in Fig. 6(c). We use the first peak of the time signal D0 = 201μm to calibrate the linear coefficient. We apply a displacement of 
0.032 mm at the midpoint of the arch at a time step of 0.069 s as a perturbation and adjust the linear coefficient of the damping 
constrain to make the time signal of um1 obtained by simulation have the close first peak D0 as it given by Tan et al. [61]. We find the 
first peak D0 = 206μm obtained by simulation with Cdamp = 0.011kg /s matches well with the experimental results, and the simulation 
results are given in Fig. 6(c). It can be obviously found in Fig. 6(c) that the attenuation ratio decreases as the displacements decreases 
which should be constant for linear damping constraint. It means that the linear translational damping constraint can not completely 

Fig. 7. The bistable arch subjected to a DC pulse magnetic field: (a) Time signal of the DC pulse magnetic field; (b) the negative value of the 
displacement of the midpoint of the arch in the e1-direction obtained by the experiment [61] and the simulations with initial or modified pa-
rameters; (c) Partial enlarged view of (b). 
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depict the viscous effect, especially for very small displacements. However, the scale of the displacements in the snap-through be-
haviors is far larger than it in the damped oscillation of the arch. The simplification of the viscous effects may be appropriate for the 
snap-through behaviors of the arch, and comparison between subsequent experiment and simulation results also indicates this. 

4.3.1. DC pulse magnetic field 
As shown in Fig. 7(a), a DC pulse magnetic field Ba in the e1-direction was increased from 0 mT to 16.3 mT with a speed of 6.5 mT/s, 

and it is applied to the arch. Fig. 7(b) and (c) record the negative values of the displacement of the midpoint of the arch in the e1- 
direction, denoted by − um1 in response to such a magnetic field obtained by experiment [61] and simulation. The critical applied 
magnetic flux density obtained by simulationBcr

a = 6.52mT is very close to the one obtained from the experiment, i.e., 6.3 mT. For 
dynamic analysis, our model captures the oscillation phenomenon, and we consider the first and second peaks in the oscillation 
process. The period and the ratio of the amplitude attenuation predicted by simulation are 0.055 s and 1.08, respectively. The cor-
responding values are 0.06 s and 1.07 reported by Tan et al. [61]. Our model gives a good prediction of the period and the ratio of 
amplitude attenuation. During the stage (i.e., 1.5 s – 2.5 s), the displacements obtained by the simulation are about 10 % larger than the 
experimental data, and this mismatch also occurred in the results obtained by the theoretical model of Tan et al. [61]. We think this 
deviation may be caused by the experimental error, such as the measurement accuracy of the initial rise a. As will be shown, the 
deviation of the initial rise afrom the reported data, that is 4 mm, will affect the stiffness of the arch. 

Stewart et al. [21] applied a magneto-viscoelastic model to simulate this example with the modified initial rise a* = 3.72 and the 
modified residual magnetic flux density B∗

r = 67.5mT, and their simulation results showed a good agreement with the experimental 
data. Inspired by this, we calibrate the material parameters, including the initial rise and the residual magnetic flux density, to match 
the experimental data of the dynamic response of the arch to the DC pulse magnetic field. We find that using the modified initial rise a* 
= 3.66mm and the modified residual magnetic flux density B∗

r = 60mT leads to an improved result in comparison with the experi-
mental data. The simulation results with modified parameters are shown in Fig. 7(b) and (c). In the subsequent sections, we further 
investigate the motion of the arch with the other two loading modes using both the initial parameters and the modified parameters. 

4.3.2. Constant magnetic field 
In this case, a constant magnetic field in the e1-direction of Ba = 7mT is applied to the arch, as is shown in Fig. 8(a). The applied 

magnetic field is slightly above the critical applied magnetic fields Bcr
a = 6.52mT and the snap-through occurs. The experimental data 

[61] and the simulation results with the initial or modified parameters of the negative value of the displacement of the arch in 
e1-direction − um1 are presented in Fig. 8(b). The simulations with initial or modified parameters both give a satisfactory prediction of 
the period, amplitude, and the ratio of amplitude attenuation. The deviation of the balancing position between the experimental data 
and the simulation data with the initial parameters is about 9 %. 

4.3.3. Triangle magnetic field 
A triangle magnetic field, shown in Fig. 9(a), is applied to the arch. The amplitude and period of the magnetic field are 16.3 mT and 

10 s, respectively. The experimental data [61] and the numerical prediction with the initial and modified parameters of − um1 can be 

Fig. 8. The bistable arch subjected to a constant magnetic field of 7 mT: (a) Time signal of the constant magnetic field; (b) the negative value of the 
displacement of the midpoint of the arch in the e1-direction obtained by experiment [61] and the simulations with initial or modified parameters. 
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found in Fig. 9(b). As shown in Fig. 9(b), The process can be divided into 5 stages: (1) the configuration of the arch is configuration 1 
during the period delimited by points A and B; (2) the arch rapidly snap from point B to C; (3) the configuration of the arch is 
configuration 2 during the period delimited by point C and D; (4) the arch rapidly snap from point D to E; (5) the configuration of the 
arch is configuration 3 during the period delimited by point E and F. The simulation with the initial or modified parameters both give a 
great prediction of the five stages. 

In general, the simulation results of the arch applied with the three kinds of magnetic fields using the initial and modified pa-
rameters both agree with the experimental data well, especially before the occurrence of the snap-through. The snap-through behavior 
of the arch can be predicted well by our model. 

5. The motions of hard-magnetic soft robotic arm 

In this section, we prepare a curved hard-magnetic soft robotic arm and apply the magnetic field in two directions to the robotic 
arm, respectively. Our model is utilized to predict the motions of the HMS robotic arm, and the simulation results are compared with 
the experiment results. 

Fig. 9. The bistable arch is subjected to a triangle magnetic field with an amplitude of 16.3 mT and a period of 10 s: (a) Time signal of the constant 
magnetic field; (b) the negative value of the displacement of the midpoint of the arch in the e1-direction obtained by experiment [61] and the 
simulations with initial or modified parameters. The process can be divided into 2 snap-through stages (point B to C and point D to E) and 3 stable 
stages (point A to B with configuration 1, point C to D with configuration 2, and point E to F with configuration 3). 

Fig. 10. Hard-magnetic soft robotic arm: (a) the schematic of the hard-magnetic soft robotic arm; (b) the physical image of the hard-magnetic soft 
robotic arm. 
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5.1. Material preparation and characterization 

The hard-magnetic soft material of the robotic arm is prepared by mixing the NdFeB powder with an average diameter of 5 μm and 
the silicon rubber E600 (Hong Ye Silicone). The two fillers of the mixture have the same mass fraction of 50 %. The mixture is poured 
into the mold and then cured for 12 h at room temperature to fabricate the HMS robotic arm. The robotic arm is a quarter arc cantilever 
with the radius of R ≈ 15mm, and the cross-section of the robotic arm is a square with the side length of a ≈ 5mm, as shown in Fig. 10 
(a) and (b). After demolding, the robotic arm is magnetized in e3-direction by applying a strong magnetic field, and the strong magnetic 
field is generated by a high magnetic field generator (Shen Zhen He Sheng Hui Electronics Co. Ltd). 

Young’s modulus of the material is E = 171.4kPa, which is the slope of the stress–strain curve. The stress-strain curve of the 
material is obtained by the uniaxial tensile experiments which are conducted on ESM303 force test stands (Mark-10). The material is 
assumed as incompressible, meaning the Poisson’s ratio of the material is chosen as 0.5. The density of the material is ρ = 1741.23kg/ 
m3. The residual magnetic flux density of the material is Br = 77.11mT, and the residual magnetic flux density is measured by using the 
following procedure. An axially magnetized straight square rod with a length of L = 70mm and side length of b = 7mm is fabricated, 
whose material component is the same as the robotic arm. We measure the surface magnetic flux density Bsurface at the distance of d =
0.1mm above the center of the top surface of by TM5100 Gaussmeter (Tunkia Co., Ltd). The rod is assumed as the uniformly 
magnetized body, and the residual magnetic flux density of the material can be calculated by the volume integration as 

Br =
π
⃒
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⃒
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. (68)  

5.2. Experimental protocol 

During experiments, the robotic arm is placed in a Helmholtz coil, which can induce a steady uniform magnetic field, as shown in 
Fig. 11(a) and (b). The coil is powered by a DC power source, and the magnitude of the magnetic field is measured by the Gaussmeter. 

Fig. 11. The hard-magnetic soft robotic arm subject to the applied magnetic field: (a) the photograph of the full experimental apparatus; (b) the 
experimental setup for driving the robotic arm by applying the magnetic field; (c) the motion of the robotic arm subjected to an applied magnetic 
field in e1-direction, and the displacements of the red point are measured; (d) the motion of the robotic arm subjected to an applied magnetic field in 
e2-direction, and the displacements of the blue point are measured. 
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In our experiments, we apply the magnetic field in the e1-direction and e2-direction respectively to the robotic arm. When the magnetic 
field in the e1-direction is applied to the robotic arm, the robotic arm will bend upwards in the e1-e2 plane, shown in Fig. 11(c), which 
are plane motions. Unlike this, the motions of the robotic arm under the applied magnetic field in e2-direction are 3D motions, which 
include the bending and torsion, as shown in Fig. 11(d). 

In our experiments, two kinds of loading processes are considered: (1) quasi-static loading, the applied magnetic flux density slowly 
increases from 0 mT to 10 mT (movie S1 and S2); (2) fast unloading, the applied magnetic flux density instantly decreases from 10 mT 
or 5 mT to 0 mT respectively (movie S3 - S6). The dynamic processes of the robotic arm are captured by a high-speed camera. 

5.3. Simulation results vs experiment results 

In this subsection, the predicted motion of the robotic arm by simulation is compared with the experiment results. When the applied 
magnetic field is in the e1-direction, the displacements of the centroid of the end cross-section (red point in Fig. 11(c)) in the e1-di-
rection uc1 and the e3-direction uc3 are measured. For the case of applying the magnetic field in the e2-direction, the displacement of the 
midpoint of the lower edge of the end cross-section (green point in Fig. 11(c)) in the e2-direction um2 is measured. It should be noted the 
um2 is not the same as uc2, and they are related by 

um2 = uc2 +
a
2
(Λende1)

Te2, (69)  

where Λend is the rotational matrix in the end cross-section. In the simulation process, ten quadratic elements are utilized, and gravity is 
considered. The experiment and simulation results of the quasi-static loading process are shown in Figs. 12(a) and (b). Our model 
accurately predicts the deformation of the HMS robotic arm without fitting any parameters from structural response. 

To predict the dynamic motion of the HMS robotic arm, we capture the viscous effect by the linear damping constraint at every 
node, which is the same as the method in Section 4.3. We calibrate the coefficient of the linear damping constraint by the fast 
unloading process of the HMS robotic arm subjected to the applied magnetic flux density of 5 mT. We use the attenuation ratio between 
the first peaks D0 and second peaks D1 to calibrate the linear coefficient. It should be noted that the coefficients of the linear damping 
constraint are different in different directions, and the linear coefficient in ei-direction is denoted by Ci

damp. We find that the atten-
uation ratio obtained by the simulation can match the experiment results with the linear coefficients C1

damp = 0.0007kg /s, C2
damp 

= 0.0010kg /s and C3
damp = 0.0007kg /s. The experiment results and simulation results are shown in Fig. 13. 

In addition, we simulate the fast unloading process of the HMS robotic arm subjected to the applied magnetic flux density of 10 mT 
with the calibrated linear coefficients of the linear damping constraints. The simulation and experiment results are shown in Fig. 14. 
The period predicted by our model is 0.067 s and obtained by experiment is 0.053 s, which shows a good agreement. Due to the 
different periods, the phase difference between the experiment result and simulation result increases over time, resulting in an obvious 
deviation for a long duration. A possible reason causing errors in predicting period may be that the rigid cross-section assumption is 
made in our model. When the robotic arm undergoes high-speed motion, the inertial force will induce a severe distortion in cross- 
section, in which the rigid cross-section assumption maybe not hold. For the 2D dynamic motion, our model delivers a good pre-
diction of the amplitude and the wave form, which means the linear damping constraints are appropriate for the 2D dynamical motion. 

Fig. 12. The motion of the HMS robotic arm in the quasi-static loading process: (a) the displacements of end centroid of the HMS robotic subjected 
to an applied magnetic field in e1-direction obtained by the experiment and simulation versus the applied magnetic flux density; (b) the dis-
placements of midpoint of the lower edge of the HMS robotic subjected to an applied magnetic field in e2-direction obtained by the experiment and 
simulation versus the applied magnetic flux density. 
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However, the predicted wave form of 3D dynamical motion shows deviation from the measured wave form. The main reason is that 
using the linear translational damping constraint to capture the viscous effects is too simple for 3D-deformation. The linear trans-
lational damping constraint can’t dissipate the energy of torsional motion, which plays an important role in the 3D-deformation. In 
addition, the self-inductance of the coils also affects the prediction of the motions of the HMS robotics arm. Due to the self-inductance 
of the coils, the magnetic flux density will not disappear instantly after closing the power supplement. In general, our model shows the 
ability to predict the motion of the HMS robotic arm. 

6. Conclusion 

In this work, we present a 3D curved rod model including the “tension-bending” and “shear-torsion” coupling effects to predict the 
dynamic motion of the hard-magnetic soft robotic arm. In our model, we define the effective deformation gradient of the deformed 
configuration relative to the undeformed curved configuration with the rigid cross-section assumption, as shown in Eq. (10). For 
isotropic linear elastic material, the constitutive equations of the rod (i.e., Eqs. (18) and (19)) are obtained by integrating the stress of 
the entire cross-section. With the initial curved configuration, two main load types of HMS robotic, i.e., gravity and magnetic loads, are 

Fig. 13. The fast unloading process of the HMS robotic arm subjected to the applied magnetic flux density of 5 mT: (a) the displacements of the 
centroid of the end cross-section in the e1-direction versus time. The first peak obtained by simulation is D0 =1.77 mm and the second peak obtained 
by simulation is D1 =1.11 mm. The attenuation ratio obtained by experiment is ηc1=1.59; (b) the displacements of the centroid of the end cross- 
section in the e3-direction versus time. The first peak obtained by simulation is D0 =2.83 mm and the second peak obtained by simulation is D1 
=1.59 mm. The attenuation ratio obtained by experiment is ηc3=1.86; (c) the displacements of midpoint of the lower edge of the end cross-section in 
the e2-direction versus time. The first peak obtained by simulation is D0 =2.05 mm and the second peak obtained by simulation is D1 =1.25 mm. The 
attenuation ratio obtained by experiment is ηm2=1.66. 
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formulated in our model, shown in Eqs. (29) and (34). To model the magnetic load, a rotation-based magnetic free energy density is 
applied to describe the material of the HMS robotic. It is worth mentioning that the gradient applied magnetic field is included in our 
model. In addition, the reduced balance equation is presented in Eq. (35). In Section 3, the finite element formulation and numerical 
implementation of the problem are presented. An implicit time stepping algorithm based on the classical Newmark algorithm is 
utilized to achieve the numerical time integration of the 3D finite rotations. 

To validate our model, three simulation examples are presented in Section 4. The deformations of a semicircular cantilever subject 
to end load (Section 4.1), the large displacement vibration of the elbow cantilever (Section 4.2), and the dynamic snap-through 
behavior of a bistable arch (Section 4.3) are numerically studied by our model, and the simulation results are compared with the 
results reported in the literature, which show a satisfactory agreement. Furthermore, a series of experiments about the quarter arc HMS 
robotic arm are performed in Section 5. The robotic arm is subjected to applied magnetic field in two directions with two loading 
modes: (1) quasi-static loading; (2) fast unloading, and the simulation results and experiment results show great agreement. 

Although our model performs reasonably well in predicting the motion of the HMS robotic arm, some limitations should be 
mentioned and further discussed: (1) The magnetic free energy density utilized in this work indicates the relation between the applied 
magnetic field and the magnetic flux density is linear, which means our model is not appropriate when the applied magnetic field is 
large. Besides, the dipole–dipole interactions are not included in our model. Although, our previous work [30] showed the impact of 
the effect on the motion of the HMS robotic is small, the effect cannot be ignored when the mass fraction of magnetic particles is very 
large. Therefore, developing the HMS rod model incorporating the nonlinear constitutive law and dipole–dipole interactions is worthy 

Fig. 14. The fast unloading process of the HMS robotic arm subjected to the applied magnetic flux density of 10 mT: (a) the displacements of the 
centroid of the end cross-section in the e1-direction versus time; (b) the displacements of the centroid of the end cross-section in the e3-direction 
versus time; (c) the displacements of midpoint of the lower edge of the end cross-section in the e2-direction versus time. 
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of future investigation. (2) The distribution of applied magnetic field is known and unaltered in our model, which is a simplification. 
The deformation of the HMS robotics actually affects the distribution of the applied magnetic field. It is necessary to consider the 
electromagnetic field in the surrounding environment in our future work. (3) The method to capture the viscous effect in our work is an 
engineering simplification, which is inadequate for complex viscous effects, such as the significant viscoelasticity in certain HMS 
materials. Incorporating the viscoelasticity of HMS material and the nonlinear damping constraints into our model is a critical task. (4) 
The rigid cross-section assumption maybe inappropriate for soft rods undergoing high speed motion. Taking the deformable 
cross-section into account is also an attractive direction. 

The model presented in this work can effectively and accurately predict the dynamic motion of the HMS robotic, which is valuable 
for the design and optimization of the HMS rod-like robotics. 
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